Browsing by Subject "Brain machine interface"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Baseline regularized sparse spatial filters(IEEE, 2013) Onaran, İbrahim; Ince, N.F.; Cetin, A. EnisThe common spatial pattern (CSP) method has large number of applications in brain machine interfaces (BMI) to extract features from the multichannel neural activity through a set of linear spatial projections. These spatial projections minimize the Rayleigh quotient (RQ) as the objective function, which is the variance ratio of the classes. The CSP method easily overfits the data when the number of training trials is not sufficiently large and it is sensitive to daily variation of multichannel electrode placement, which limits its applicability for everyday use in BMI systems. To overcome these problems, the amount of channels that is used in projections, should be limited to some adequate number. We introduce a spatially sparse projection (SSP) method that renders unconstrained minimization possible via a new objective function with an approximated ℓ1 penalty. We apply our new algorithm with a baseline regularization to the ECoG data involving finger movements to gain stability with respect to the number of sparse channels. © 2013 IEEE.Item Open Access Classification of multichannel ECoG related to individual finger movements with redundant spatial projections(IEEE, 2011) Onaran, ibrahim; İnce, N. Fırat; Çetin, A. EnisWe tackle the problem of classifying multichannel electrocorticogram (ECoG) related to individual finger movements for a brain machine interface (BMI). For this particular aim we applied a recently developed hierarchical spatial projection framework of neural activity for feature extraction from ECoG. The algorithm extends the binary common spatial patterns algorithm to multiclass problem by constructing a redundant set of spatial projections that are tuned for paired and group-wise discrimination of finger movements. The groupings were constructed by merging the data of adjacent fingers and contrasting them to the rest, such as the first two fingers (thumb and index) vs. the others (middle, ring and little). We applied this framework to the BCI competition IV ECoG data recorded from three subjects. We observed that the maximum classification accuracy was obtained from the gamma frequency band (65200Hz). For this particular frequency range the average classification accuracy over three subjects was 86.3%. These results indicate that the redundant spatial projection framework can be used successfully in decoding finger movements from ECoG for BMI. © 2011 IEEE.Item Open Access Extraction of sparse spatial filters using Oscillating Search(IEEE, 2012) Onaran, İbrahim; İnce, N. Fırat; Abosch, A.; Çetin, A. EnisCommon Spatial Pattern algorithm (CSP) is widely used in Brain Machine Interface (BMI) technology to extract features from dense electrode recordings by using their weighted linear combination. However, the CSP algorithm, is sensitive to variations in channel placement and can easily overfit to the data when the number of training trials is insufficient. Construction of sparse spatial projections where a small subset of channels is used in feature extraction, can increase the stability and generalization capability of the CSP method. The existing 0 norm based sub-optimal greedy channel reduction methods are either too complex such as Backward Elimination (BE) which provided best classification accuracies or have lower accuracy rates such as Recursive Weight Elimination (RWE) and Forward Selection (FS) with reduced complexity. In this paper, we apply the Oscillating Search (OS) method which fuses all these greedy search techniques to sparsify the CSP filters. We applied this new technique on EEG dataset IVa of BCI competition III. Our results indicate that the OS method provides the lowest classification error rates with low cardinality levels where the complexity of the OS is around 20 times lower than the BE. © 2012 IEEE.Item Open Access A novel objective function minimization for sparse spatial filters(IEEE, 2014) Onaran, İ.; İnce, N. F.; Çetin, A. EnisCommon spatial pattern (CSP) method is widely used in brain machine interface (BMI) applications to extract features from the multichannel neural activity through a set of spatial projections. The CSP method easily overfits the data when the number of training trials is not sufficiently large and it is sensitive to daily variation of multichannel electrode placement, which limits its applicability for everyday use in BMI systems. To overcome these problems, the amount of channels that is used in projections, should be limited. We introduce a spatially sparse projection (SSP) method that exploits the unconstrained minimization of a new objective function with approximated l\ penalty. The SSP method is employed to classify the two class EEG data set. Our method outperforms the standard CSP method and provides comparable results to £o norm based solution and it is associated with less computational complexity.