Browsing by Subject "Boron nitride"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Boron nitride and graphene 2D nanostructures from first-principles(2010) Ovalı, Rasim VolgaIn this thesis, the structures as well as mechanical and electronic properties of various boron nitride (BN) and graphene based two dimensional (2D) nano-structures are investigated in detail from rst-principle calculations using planewave pseudopotential method based on density functional theory. At the beginning of the thesis, essentials of the density functional theory (DFT) and a guidance for performing ab-initio calculations in the framework of DFT is presented. In addition, fundamentals about the exchange-correlation potential as well as approaches approximating it like local density approximation (LDA) and generalized gradient approximation (GGA) are discussed. Along with this thesis, rst of all, in order to understand the relation between the hexagonal boron nitride (h-BN) and cubic boron nitride (c-BN) and the growth of three dimensional (3D) BN structures, various defect structures introduce to BN monolayer, including point defects and especially highly curved defects such as n-fold rings, are investigated in detail. The calculated formation energies and structural analysis showed that 4-fold BN rings are the transient phase between h-BN to c-BN during c-BN nucleation. The charge density plots and density of states analysis further provide information about the electronic structure of these defect formations. Second of all, we have studied the formation of boron-nitride-carbon (BNC) ternary thin lms, so we observed the carbon nucleation in BN monolayer. These DFT based calculations show that carbon prefers the nitrogen site at rst step and the calculated defect energy indicates that carbon atoms tends to aggregate in BN hexagonal network, and hence increases the number of C-C bonds. BNC structures have magnetization of =1.0 B for odd number of carbon adsorption. Further substitution of carbon atoms into BN layer showed that carbon atomsform hexagonal rings instead of armchair or zigzag formations. Moreover, we calculated the vibrational modes of BN monolayer and BNC structures, and phonon density of states graphs are presented. The phonon frequencies intrinsic to C-C bond oscillations are observed, which is in good agreement with the experiment. Finally, point defects and ring formations on graphene are investigated in order to understand the Y-junction and kink formation in carbon nanotubes (CNTs). Pentagonal rings are the good candidates to initiate such 2D networks in CNTs. The curvature increases with increasing number of pentagonal rings. Moreover, interaction of sulphur atoms with graphene defects is studied. Final geometries and binding energies suggest that sulphur prefers to adsorb on defected regions, but it is not responsible for the formation of these structures or defects.Item Open Access Hybrid plasmon-phonon polariton bands in graphene-hexagonal boron nitride metamaterials [Invited](Optical Society of America, 2017) Hajian, H.; Ghobadi, A.; Dereshgi, S. A.; Butun, B.; Özbay, EkmelWe theoretically investigate mid-infrared electromagnetic wave propagation in multilayered graphene-hexagonal boron nitride (hBN) metamaterials. Hexagonal boron nitride is a natural hyperbolic material that supports highly dispersive phonon polariton modes in two Reststrahlen bands with different types of hyperbolicity. Due to the hybridization of surface plasmon polaritons of graphene and hyperbolic phonon polaritons of hBN, each isolated unit cell of the graphene-hBN metamaterial supports hybrid plasmon-phonon polaritons (HPPs). Through the investigation of band structure of the metamaterial we find that, due to the coupling between the HPPs supported by each unit cell, the graphene-hBN metamaterial can support HPP bands. The dispersion of these bands can be noticeably modified for different thicknesses of hBN layers, leading to the appearance of bands with considerably flat dispersions. Moreover, analysis of light transmission through the metamaterial reveals that this system is capable of supporting high-k propagating HPPs. This characteristic makes graphene-hBN metamaterials very promising candidates for the modification of the spontaneous emission of a quantum emitter, hyperlensing, negative refraction, and waveguiding. © 2017 Optical Society of America.Item Open Access Modulation of electronic properties in laterally and commensurately repeating graphene and boron nitride composite nanostructures(American Chemical Society, 2015) Özçelik, V. O.; Durgun, Engin; Çıracı, SalimGraphene and hexagonal boron nitride (h-BN) nanoribbons of diverse widths and edge geometries are laterally repeated to form commensurate, single-layer, hybrid honeycomb structures. The resulting composite materials appear as continuous, one atom thick stripes of graphene and BN having the average mechanical properties of constituent structures. However, depending on the widths of constituent stripes they can be metal or semiconductor with band gaps in the energy range of the visible light. These two-dimensional (2D) composite materials allow strong dimensionality in electrical conductivity and undergo transition from 2D to one-dimensional (1D) metal in a 2D medium, resulting in multichannel narrow conductors. As for the composite ribbons, such as one dielectric BN stripe placed between two graphene stripes with bare zigzag edges, charge separation of opposite polarity is possible under applied electric field and they exhibit resonant tunneling effects at nanoscale. Graphene/BN composite materials also form stable single-wall nanotubes with zigzag or armchair geometries.Item Open Access Nanocomposite glass coatings containing hexagonal boron nitride nanoparticles(Pergamon Press, 2016) Çamurlu, H. E.; Akarsu, E.; Arslan, O.; Mathur, S.Glass coatings composed of SiO2-K2O-Li2O, containing non-modified and fluorosilane modified hexagonal boron nitride (hBN) nanoparticles, were prepared on stainless steel plates through sol-gel spin-coating method. Coatings were examined by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD), atomic force microscopy (AFM) and thermo-gravimetric analysis (TGA). 1.3-2.5 μm thick uniform coatings were obtained after curing at 500 °C for 1 h. The coatings adhered well to the steel substrates. It was determined by salt spray tests that the coatings enhance corrosion resistance. The aim of hydrophobic fluorosilane modification of hBN nanoparticles was to enrich hBN quantity on the top surface of the coatings. Coatings containing fluorosilane modified hBN nanoparticles presented slightly lower friction coefficient values than the other coatings.Item Open Access Radiation shielding tests of crosslinked polystyrene-b-polyethyleneglycol block copolymers blended with nanostructured selenium dioxide and boron nitride particles(MDPI, 2022-02-01) Cinan, Zehra Merve; Erol, Burcu; Baskan, Taylan; Mutlu, Saliha; Ortaç, Bülend; Savaskan Yilmaz, Sevil; Yilmaz, Ahmet HakanIn this work, gamma-ray shielding features of crosslinked polystyrene-b-polyethyleneglycol block copolymers (PS-b-PEG) blended with nanostructured selenium dioxide (SeO2 ) and boron ni-tride (BN) particles were studied. This research details several radiation shielding factors i.e., mass attenuation coefficient (µm ), linear attenuation coefficient (µL ), radiation protection efficiency (RPE), half-value layer (HVL), tenth-value layer (TVL), and mean free path (MFP). The irradiation properties of our nanocomposites were investigated with rays from the152 Eu source (in the energy intervals from 121.780 keV to 1408.010 keV) in a high-purity germanium (HPGe) detector system, and analyzed with GammaVision software. Moreover, all radiation shielding factors were determined by theoretical calculus and compared with the experimental results. In addition, the morphological and thermal characterization of all nanocomposites was surveyed with various techniques i.e., nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). Acceptable compatibility was revealed and observed in all nanocomposites between the experimental and theoretical results. The PS-b-PEG copolymer and nanostructured SeO2 and BN particles exerted a significant effect in enhancing the resistance of the nanocomposites, and the samples with high additive rates exhibited better resistance than the other nanocomposites. From the achieved outcomes, it can be deduced that our polymer-based nanocomposites can be utilized as a good choice in the gamma-irradiation-shielding discipline. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Item Open Access Structural and electronic properties of MoS2, WS2, and WS2/MoS2 heterostructures encapsulated with hexagonal boron nitride monolayers(American Institute of Physics Inc., 2017) Yelgel, C.; Yelgel, Ö. C.; Gülseren, O.In this study, we investigate the structural and electronic properties of MoS2, WS2, and WS2/MoS2 structures encapsulated within hexagonal boron nitride (h-BN) monolayers with first-principles calculations based on density functional theory by using the recently developed non-local van der Waals density functional (rvv10). We find that the heterostructures are thermodynamically stable with the interlayer distance ranging from 3.425 Å to 3.625 Å implying van der Waals type interaction between the layers. Except for the WS2/h-BN heterostructure which exhibits direct band gap character with the value of 1.920 eV at the K point, all proposed heterostructures show indirect band gap behavior from the valence band maximum at the Γ point to the conduction band minimum at the K point with values varying from 0.907 eV to 1.710 eV. More importantly, it is found that h-BN is an excellent candidate for the protection of intrinsic properties of MoS2, WS2, and WS2/MoS2 structures.