BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Bone Regeneration"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Biomimetic self-assembled peptide nanofibers for bone regeneration
    (2012) Kocabey, Samet
    Self-assembled peptide nanofibers are exploited in regenerative medicine applications due to their versatile, biofunctional and extracellular-matrixresembling structures. These properties provide peptide nanofibers with osteoinductive and osteoconductive behaviors for bone regeneration applications through several approaches. In this thesis, two different approaches were discussed, which were developed to induce bone regeneration and mineralization including extracellular matrix mimicking peptide nanofibers based 2-D gel formation and surface functionalization of titanium implants. For this purpose, we designed glycosaminoglycan-mimetic peptide nanofibers inspired by chemical structure of glycosaminoglycans present in the bone extracellular matrix. We demonstrated that glycosaminoglycan-mimetic peptide nanofibers interact with BMP-2, a critical growth factor for osteogenic activity. Glycosaminoglycan-mimicking ability of the peptide nanofibers and their interaction with BMP-2 promoted osteogenic activity of and mineralization by osteoblastic cells. ALP activity, Alizarin Red Staining and EDAX spectroscopy indicated efficacy of the peptide nanofibers for inducing mineralization. We also developed a hybrid osteoconductive system for titanium biomedical implants inspired by mussel adhesion mechanism in order to overcome bone tissue integration problems. For this purpose, Dopa conjugated peptide nanofiber coating was used along with bioactive peptide sequences for osteogenic activity to enhance osseointegration of titanium surface. Dopamediated immobilization of osteogenic peptide nanofibers on titanium surfaces created an osteoconductive interface between osteoblast-like cells and inhibited adhesion and viability of soft tissue forming fibroblasts compared to the uncoated titanium substrate. In summary, osteoinductive and osteoconductive self-assembled peptide nanofibers were developed to promote osteogenic activity and mineralization of osteogenic cells. These bioactive nanofibers provide a potent platform in clinical applications of bone tissue engineering.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback