Browsing by Subject "Bipartite Graph"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A bipartite graph model for placement, scheduling and replication in data grids(2012) Dal, BurcuData grids provide geographically distributed resources for applications that generate and utilize large data sets. However, there are some issues that hinder to ensure fast access to data and low turnaround time for the jobs in data grids. To address these issues, several data replication and job scheduling strategies have been introduced to offer high data availability, low bandwidth consumption, and reduced turnaround time for grid systems. Multiple copies of existing data are maintained at different locations via data replication. Data replication strategies are broadly categorized as static and dynamic. In static replication strategies, replication is performed during the system design, and replica decisions are generally based on a cost model that includes data access costs, bandwidth characteristics and storage constraints of the grid system. In dynamic replication strategies, the replication operation is managed at runtime so that the system adapts to the changes in user request patterns dynamically. Job scheduling strategies fall under two main categories: online mode and batch mode. The online mode scheduler assigns tasks to sites as soon as they arrive. In the batch mode, the complete set of jobs are taken into account and scheduled at the same time by using all the grid information. In this thesis, we propose a bipartite graph model for tasks and files in the grid system, and then we partition this graph to obtain a data placement and job scheduling strategy. The obtained parts are further refined in order to be assigned to grid sites by using a KL-based heuristic that takes the bandwidth and hop information between sites into account. Replication is achieved by replicating a certain amount of most accessed files chosen prior to the partitioning process. Experimental results indicate that the increase in the partitioning quality reflects positively on the mapping quality. Morever, it is observed that the communication cost is notably decreased when the data replication is applied. Hence, our results show that by replicating a small amount of data files and placing files onto sites using bipartite graph model, we can obtain performance improvement for scheduling jobs compared to no replication.Item Open Access Egalitarianism under earmark constraints(Elsevier, 2013) Bochet, O.; İlkılıç, R.; Moulin, H.Agents with single-peaked preferences share a resource coming from different suppliers; each agent is connected to only a subset of suppliers. Examples include workload balancing, sharing earmarked funds, and rationing utilities after a storm. Unlike in the one supplier model, in a Pareto optimal allocation agents who get more than their peak from underdemanded suppliers, coexist with agents who get less from overdemanded suppliers. Our Egalitarian solution is the Lorenz dominant Pareto optimal allocation. It treats agents with equal demands as equally as the connectivity constraints allow. Together, Strategyproofness, Pareto Optimality, and Equal Treatment of Equals, characterize our solution.