BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Biotechnology"

Filter results by typing the first few letters
Now showing 1 - 6 of 6
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Bacteria encapsulated electrospun nanofibrous webs for remediation of methylene blue dye in water
    (Elsevier, 2017-04) Sarioglu O.F.; Keskin, N. O. S.; Celebioglu A.; Tekinay, T.; Uyar, Tamer
    In this study, preparation and application of novel biocomposite materials that were produced by encapsulation of bacterial cells within electrospun nanofibrous webs are described. A commercial strain of Pseudomonas aeruginosa which has methylene blue (MB) dye remediation capability was selected for encapsulation, and polyvinyl alcohol (PVA) and polyethylene oxide (PEO) were selected as the polymer matrices for the electrospinning of bacteria encapsulated nanofibrous webs. Encapsulation of bacterial cells was monitored by scanning electron microscopy (SEM) and fluorescence microscopy, and the viability of encapsulated bacteria was checked by live/dead staining and viable cell counting assay. Both bacteria/PVA and bacteria/PEO webs have shown a great potential for remediation of MB, yet bacteria/PEO web has shown higher removal performances than bacteria/PVA web, which was probably due to the differences in the initial viable bacterial cells for those two samples. The bacteria encapsulated electrospun nanofibrous webs were stored at 4 °C for three months and they were found as potentially storable for keeping encapsulated bacterial cells alive. Overall, the results suggest that electrospun nanofibrous webs are suitable platforms for preservation of living bacterial cells and they can be used directly as a starting inoculum for bioremediation of water systems.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Evaluation of fiber diameter and morphology differences for electrospun fibers on bacterial immobilization and bioremediation performance
    (Elsevier, 2017-05) Sarioglu O.F.; Celebioglu A.; Tekinay, T.; Uyar, Tamer
    In this report, morphology and fiber diameter differences of electrospun polysulfone (PSU) fibers on bacterial immobilization and bioremediation performance were evaluated. PSU fibers were produced with aligned or randomly oriented morphologies, and PSU fibers with thinner and thicker diameters were also produced. PSU fibers were utilized as carrier matrices for bacterial integration and the sample showing highest bacterial immobilization was tested for bioremediation of ammonium and methylene blue dye in water. It was found that randomly oriented and thinner PSU fibers are the optimal system for bacterial immobilization, hence bioremediation studies were performed with this sample. The results demonstrated that bacteria immobilized PSU fibers are promising candidates for simultaneous removal of ammonium and methylene blue dye, and they have a potential to be used in remediation of water systems.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Fluorescent chemosensors: The past, present and future
    (Royal Society of Chemistry, 2017) Wu, D.; Sedgwick, A. C.; Gunnlaugsson, T.; Akkaya, E. U.; Yoon, J.; James, T. D.
    Fluorescent chemosensors for ions and neutral analytes have been widely applied in many diverse fields such as biology, physiology, pharmacology, and environmental sciences. The field of fluorescent chemosensors has been in existence for about 150 years. In this time, a large range of fluorescent chemosensors have been established for the detection of biologically and/or environmentally important species. Despite the progress made in this field, several problems and challenges still exist. This tutorial review introduces the history and provides a general overview of the development in the research of fluorescent sensors, often referred to as chemosensors. This will be achieved by highlighting some pioneering and representative works from about 40 groups in the world that have made substantial contributions to this field. The basic principles involved in the design of chemosensors for specific analytes, problems and challenges in the field as well as possible future research directions are covered. The application of chemosensors in various established and emerging biotechnologies, is very bright.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    High school biology teachers and bioethics: awareness, attitudes and teaching practices
    (2021-01) Deniz, Özge
    Nowadays, with the advancement of technology, biotechnology and genetic engineering applications have gained momentum, especially in the field of medicine, very important developments have been made. However, the risks and ethical aspects of these practices cause conflict among scientists. These applications within the scope of bioethics are taught within the high school MoNE curriculum and the IBDP curriculum. Disagreements between scientists are likely to manifest themselves in biology classes. This study investigates the bioethics awareness of high school biology teachers, their attitudes towards bioethics and teaching these subjects, and their instructional strategies. Thus, the research aims to contribute to bioethics education. In this study, the mixed method in which qualitative and quantitative research approaches are applied together was used. The data of the study were analysed by descriptive statistics and content analysis methods. Analysis results determined that teachers have bioethical awareness, have a positive attitude towards bioethics, and make use of various teaching strategies that they think are effective for teaching.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Induction of triacylglycerol production in Chlamydomonas reinhardtii: comparative analysis of different element regimes
    (Elsevier, 2014) Çakmak, Z. E.; Ölmez, T. T.; Çakmak, T.; Menemen, Y.; Tekinay, T.
    In this study, impacts of different element absence (nitrogen, sulfur, phosphorus and magnesium) and supplementation (nitrogen and zinc) on element uptake and triacylglycerol production was followed in wild type Chlamydomonas reinhardtii CC-124 strain. Macro- and microelement composition of C. reinhardtii greatly differed under element regimes studied. In particular, heavy metal quotas of the microalgae increased strikingly under zinc supplementation. Growth was suppressed, cell biovolume, carbohydrate, total neutral lipid and triacylglycerol levels increased when microalgae were incubated under these element regimes. Most of the intracellular space was occupied by lipid bodies under all nutrient starvations, as observed by confocal microscopy and transmission electron micrographs. Results suggest that sulfur, magnesium and phosphorus deprivations are superior to nitrogen deprivation for the induction triacylglycerol production in C. reinhardtii. On the other hand, FAME profiles of the nitrogen, sulfur and phosphorus deprived cells were found to meet the requirements of international standards for biodiesel.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Portable microfluidic integrated plasmonic platform for pathogen detection
    (Nature Publishing Group, 2015) Tokel, O.; Yildiz, U. H.; Inci, F.; Durmus, N. G.; Ekiz, O. O.; Turker, B.; Cetin, C.; Rao, S.; Sridhar, K.; Natarajan, N.; Shafiee, H.; Dana, A.; Demirci, U.
    Timely detection of infectious agents is critical in early diagnosis and treatment of infectious diseases. Conventional pathogen detection methods, such as enzyme linked immunosorbent assay (ELISA), culturing or polymerase chain reaction (PCR) require long assay times, and complex and expensive instruments, which are not adaptable to point-of-care (POC) needs at resource-constrained as well as primary care settings. Therefore, there is an unmet need to develop simple, rapid, and accurate methods for detection of pathogens at the POC. Here, we present a portable, multiplex, inexpensive microfluidic-integrated surface plasmon resonance (SPR) platform that detects and quantifies bacteria, i.e., Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) rapidly. The platform presented reliable capture and detection of E. coli at concentrations ranging from ∼105 to 3.2 × 107 CFUs/mL in phosphate buffered saline (PBS) and peritoneal dialysis (PD) fluid. The multiplexing and specificity capability of the platform was also tested with S. aureus samples. The presented platform technology could potentially be applicable to capture and detect other pathogens at the POC and primary care settings. © 2015, Nature Publishing Group. All rights reserved.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback