Browsing by Subject "Biophysics"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Electrostatics of polymer translocation through membrane nanopores in electrolyte solutions(2021-02) Mohamed, Ghada Mahmoud AbdullahThe transport of polymers across membranes in electrolyte solutions happens in most biological systems and is necessary for cells to function. Moreover, the poly-mer translocation process has proven to be very important in experiments and applications as well, providing a rich source of information about the polymer’s size and composition [1], [2], making the polymer translocation procedure a po-tential sequencing method that is efficient, cheap, and quick [3], [4]. However, no consensus on the theoretical understanding of the translocation mechanism has been reached yet [3], leaving it a major challenge for theoretical modelling due to its steric, hydrodynamic, and electrostatic interactions [2], [5]. Here, we calculate the electrostatic energy cost of the translocating polymer in both the approach and translocation phases and investigate the dependence of the poly-mer’s grand potential on different model tunable parameters. In the case of neu-tral membranes, low permittivity carbon-based membranes repel the approaching polymer with energy magnitude between ∼ 11 kBT and ∼ 27 kBT , while high permittivity engineered membranes attract the approaching polymer with almost the same energy magnitude. This behavior can be attributed to polymer image-charge interactions, which become amplified with low permittivity membranes. In strong salt solutions, the membrane exhibits a repulsive barrier that turns to a metastable well in dilute solutions. In pure solvents, the metastable well becomes a deep, stable well that traps the polymer in the pore for some time, where the translocation phase is mainly governed by the attractive trans-cis side interac-tion. For weakly charged membranes, the membrane charge attraction wins over the image-charge repulsion, leading to an attractive minimum at zt ≈ −1 nm followed by a repulsive barrier at lt = L/2 while for stronger membrane charges, the attractive well turns to a metastable point followed by an attractive, stable well. These results suggest that, in translocation experiments, DNA motion can be controlled by tuning the system parameters, such as the solution concentration or the membrane charge.Item Open Access Hyaluronan orders water molecules in its nanoscale extended hydration shells(American Association for the Advancement of Science (AAAS), 2021-03-03) Dedic, J.; Okur, Halil İbrahim; Roke, S.Hyaluronan (HA) is an anionic, highly hydrated bio-polyelectrolyte found in the extracellular environment, like the synovial fluid between joints. We explore the extended hydration shell structure of HA in water using femtosecond elastic second-harmonic scattering (fs-ESHS). HA enhances orientational water-water correlations. Angle-resolved fs-ESHS measurements and nonlinear optical modeling show that HA behaves like a flexible chain surrounded by extended shells of orientationally correlated water. We describe several ways to determine the concentration-dependent size and shape of a polyelectrolyte in water, using the amount of water oriented by the polyelectrolyte charges as a contrast agent. The spatial extent of the hydration shell is determined via temperature-dependent measurements and can reach up to 475 nm, corresponding to a length of 1600 water molecules. A strong isotope effect, stemming from nuclear quantum effects, is observed when light water (H2O) is replaced by heavy water (D2O), amounting to a factor of 4.3 in the scattered SH intensity.Item Open Access Stratonovich-to-Itô transition in noisy systems with multiplicative feedback(Nature Publishing Group, 2013) Pesce G.; McDaniel, A.; Hottovy, S.; Wehr J.; Volpe G.Intrinsically noisy mechanisms drive most physical, biological and economic phenomena. Frequently, the system's state influences the driving noise intensity (multiplicative feedback). These phenomena are often modelled using stochastic differential equations, which can be interpreted according to various conventions (for example, Itô calculus and Stratonovich calculus), leading to qualitatively different solutions. Thus, a stochastic differential equation-convention pair must be determined from the available experimental data before being able to predict the system's behaviour under new conditions. Here we experimentally demonstrate that the convention for a given system may vary with the operational conditions: we show that a noisy electric circuit shifts from obeying Stratonovich calculus to obeying Itô calculus. We track such a transition to the underlying dynamics of the system and, in particular, to the ratio between the driving noise correlation time and the feedback delay time. We discuss possible implications of our conclusions, supported by numerics, for biology and economics. © 2013 Macmillan Publishers Limited. All rights reserved.