Browsing by Subject "Binary spatial partitioning (BSP)"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Spatial subdivision for parallel ray casting/tracing(1995) İşler, VeysiRay casting/tracing has been extensively studied for a long time, since it is an elegant way of producing realistic images. However, it is a computationally intensive algorithm. In this study, a taxonomy of parallel ray casting/tracing algorithms is presented cind the primary parallel ray casting/tracing systems are discussed and criticized. This work mainly focuses on the utilization of spatial subdivision technique for ray casting/tracing on a distributed-memory MIMD parallel computer. In this research, the reason for the use of parallel computers is not only the processing power but also the large memory space provided by them. The spatial subdivision technique has been adapted to parallel ray casting/tracing to decompose a three-dimensional complex scene that may not fit into the local memory of a single processor. The decomposition method achieves an even distribution of scene objects while allowing to exploit graphical coherence. Additionally, the decomposition method produces three-dimensional volumes which are mapped inexpensively to the processors so that the objects within adjacent volumes are stored in the local memories of close processors to decrease interprocessor communication cost. Then, the developed decomposition and mapping methods have been parallelized efficiently to reduce the preprocessing overhead. Finally, a splitting plane concept (called “jaggy splitting plane”) has been proposed to accomplish full utilization of the memory space of processors. Jaggy splitting plane avoids the shared objects which are the major sources of inefficient utilization of both memory and processing power. The proposed parallel algorithms have been implemented on the Intel iPSC/2 hypercube multicomputer (distributed-memory MIMD).