BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Big data."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Application of map/reduce paradigm in supercomputing systems
    (2013) Demirci, Gündüz Vehbi
    Map/Reduce is a framework first introduced by Google in order to rapidly develop big data analytic applications on distributed computing systems. Even though the Map/Reduce paradigm had a game changing impact on certain fields of computer science such as information retrieval and data mining, it did not have such an impact on the scientific computing domain yet. The current implementations of Map/Reduce are especially designed for commodity PC clusters, where failures of compute nodes are common and inter-processor communication is slow. However, scientific computing applications are usually executed on high performance computing (HPC) systems and such systems provide high communication bandwidth with low message latency where failures of processors are rare. Therefore, Map/Reduce framework causes performance degradation and becomes less preferable in scientific computing domain. Due to these reasons, specific implementations of Map/Reduce paradigm are needed for scientific computing domain. Among the existing implementations, we focus our attention on the MapReduce-MPI (MR-MPI) library developed at Sandia National Labs. In this thesis, we argue that by utilizing MR-MPI Library, the Map/Reduce programming paradigm can be successfully utilized for scientific computing applications that require scalability and performance. We tested MR-MPI Library in HPC systems with several fundamental algorithms that are frequently used in scientific computing and data mining domains. Implemented algorithms include all-pair-similarity-search (APSS), all-pair-shortest-path (APSP), and page-rank (PR). Tests were performed on well-known large-scale HPC systems IBM BlueGene/Q (Juqueen) and Cray XE6 (Hermit) to examine scalability and speedup of these algorithms.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback