Browsing by Subject "Bicriteria optimization"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access An analysis of cyclic scheduling problems in robot centered cells(Elsevier, 2012) Yıldız, Serdar; Karasan, Oya Ekin; Aktürk, M. SelimThe focus of this study is a robot centered cell consisting of m computer numerical control (CNC) machines producing identical parts. Two pure cycles are singled out and further investigated as prominent cycles in minimizing the cycle time. It has been shown that these two cycles jointly dominate the rest of the pure cycles for a wide range of processing time values. For the remaining region, the worst case performances of these pure cycles are established. The special case of 3-machines is studied extensively in order to provide further insight for the more general case. The situation where the processing times are controllable is analyzed. The proposed pure cycles also dominate the rest when the cycle time and total manufacturing cost objectives are considered simultaneously from a bicriteria optimization point of view. Moreover, they also dominate all of the pure cycles in in-line robotic cells. Finally, the efficient frontier of the 3-machine case with controllable processing times is depicted as an example.Item Open Access Bicriteria robotic cell scheduling(Springer, 2008) Gultekin, H.; Akturk, M. S.; Karasan, O. E.This paper considers the scheduling problems arising in two- and three-machine manufacturing cells configured in a flowshop which repeatedly produces one type of product and where transportation of the parts between the machines is performed by a robot. The cycle time of the cell is affected by the robot move sequence as well as the processing times of the parts on the machines. For highly flexible CNC machines, the processing times can be changed by altering the machining conditions at the expense of increasing the manufacturing cost. As a result, we try to find the robot move sequence as well as the processing times of the parts on each machine that not only minimize the cycle time but, for the first time in robotic cell scheduling literature, also minimize the manufacturing cost. For each 1-unit cycle in two- and three-machine cells, we determine the efficient set of processing time vectors such that no other processing time vector gives both a smaller cycle time and a smaller cost value. We also compare these cycles with each other to determine the sufficient conditions under which each of the cycles dominates the rest. Finally, we show how different assumptions on cost structures affect the results.Item Open Access Considering manufacturing cost and scheduling performance on a CNC turning machine(Elsevier, 2007) Gurel, S.; Akturk, M. S.A well known industry application that allows controllable processing times is the manufacturing operations on CNC machines. For each turning operation as an example, there is a nonlinear relationship between the manufacturing cost and its required processing time on a CNC turning machine. If we consider total manufacturing cost (F1) and total weighted completion time (F2) objectives simultaneously on a single CNC machine, making appropriate processing time decisions is as critical as making job sequencing decisions. We first give an effective model for the problem of minimizing F1 subject to a given F2 level. We deduce some optimality properties for this problem. Based on these properties, we propose a heuristic algorithm to generate an approximate set of efficient solutions. Our computational results indicate that the proposed algorithm performs better than the GAMS/MINOS commercial solver both in terms of solution quality and computational requirements such that the average CPU time is only 8% of the time required by the GAMS/MINOS.