BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Bench-mark problems"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Accuracy and efficiency considerations in the solution of extremely large electromagnetics problems
    (IEEE, 2011) Gürel, Levent; Ergül, Özgür
    This study considers fast and accurate solutions of extremely large electromagnetics problems. Surface formulations of large-scale objects lead to dense matrix equations involving millions of unknowns. Thanks to recent developments in parallel algorithms and high-performance computers, these problems can easily be solved with unprecedented levels of accuracy and detail. For example, using a parallel implementation of the multilevel fast multipole algorithm (MLFMA), we are able to solve electromagnetics problems discretized with hundreds of millions of unknowns. Unfortunately, as the problem size grows, it becomes difficult to assess the accuracy and efficiency of the solutions, especially when comparing different implementations. This paper presents our efforts to solve extremely large electromagnetics problems with an emphasis on accuracy and efficiency. We present a list of benchmark problems, which can be used to compare different implementations for large-scale problems. © 2011 IEEE.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Accuracy: The Frequently Overlooked Parameter in the Solution of Extremely Large Problems
    (IEEE, 2011) Ergul, O.; Gürel, Levent
    We investigate error sources and their effects on the accuracy of solutions of extremely large electromagnetics problems with parallel implementations of the multilevel fast multipole algorithm (MLFMA). Accuracy parameters and their effects on the accuracy of MLFMA solutions are studied for large-scale problems discretized with hundreds of millions of unknowns. We show that some error sources are more dominant and should be suppressed for more accurate solutions; identifying less-effective error sources may allow us to derive more efficient implementations. Based on our analysis, we determine a set of benchmark problems that can be used to compare the accuracy of solvers for large-scale computations. A benchmarking tool is provided at www.cem.bilkent.edu.tr/ benchmark.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Benchmark Solutions of Large Problems for Evaluating Accuracy and Efficiency of Electromagnetics Solvers
    (IEEE, 2011) Ergul, O.; Gürel, Levent
    We present a set of benchmark problems involving conducting spheres and their solutions using a parallel implementation of the multilevel fast multipole algorithm (MLFMA). Accuracy of the implementation is tested by comparing the computational results with analytical Mie-series solutions. Reference solutions are made available on an interactive website to evaluate and compare the accuracy and efficiency of fast solvers. We also demonstrate the capabilities of our solver on real-life problems involving complicated targets, such as the Flamme.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback