Browsing by Subject "Azacitidine"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access The comparative effects of gene modulators on thyroid-specific genes and radioiodine uptake(Mary Ann Liebert, 2007) Tuncel, M.; Aydın, D.; Yaman, Elif; Tazebay, Uygar H.; Güç, D.; Doğan, A. L.; Taşbasan, B.; Uǧur, Ö.The aim of this study was to comparatively investigate the effects of 5-azacytidine-C (5-Aza), trichostatin-A (TSA), and all-trans retinoic acid (ATRA) on mRNA expressions of Na/I symporter (NIS), thyroglobulin (Tg), thyroid peroxidase (TPO), and thyroid stimulating hormone receptor (TSH-R), and radioiodine (RAI) uptake in cancer (B-CPAP) and normal (Nthy-ori 3-1) thyroid cell lines. Cell lines were treated with 10 ng/mL of TSA, 5 μM of 5-Aza, and 1 μM of ATRA, according to the MTT (methyl-thiazol-tetrazolium) test results. Additionally, recombinant thyroid stimulating hormone (rTSH) was also applied, with a selected dose of 100 ng/mL. Following the treatment, NIS, Tg, TPO, and TSH-R mRNA levels were detected by real-time-polymerase chain reaction (RT-PCR) and RAI uptakes were measured by using a well counter as the counts/cell number. 5-Aza increased TSH-R mRNA expression in both of the cell lines and decreased TPO, NIS, and Tg mRNA levels in the cancer cell line. In the normal thyroid cell line, 5-Aza increased TPO mRNA levels 2-fold and made no differences in NIS and Tg mRNA levels. TSA treatment repressed NIS and Tg mRNA levels, and made no differences on other thyroid specific genes investigated in the cancer cell line. In the normal thyroid cell line, TSA increased TSH-R mRNA levels in 72 hours and created no important differences in other genes. ATRA repressed the TSH-R mRNA levels in the normal thyroid cell line and increased the TPO and Tg mRNA levels slightly in both cell lines. Furthermore, in short-term treatment, ATRA repressed NIS gene expression slightly, but in the long term, this repression turned to basal levels. 5-Aza, TSA, and ATRA did not make any differences in RAI uptake in the cancer cell line, but rTSH increased RAI uptake significantly. In the normal thyroid cell line, TSA and ATRA decreased RAI uptake (to 1/10 and 1/2, respectively), but 5-Aza and rTSH increased RAI uptake significantly (2- and 4-fold, respectively). We have shown an increase in TSH-R gene expression and radioiodine uptake with 5-Aza. Further in vitro and in vivo studies are needed to support our findings and the potential clinical use of this agent.Item Open Access SIP1 is downregulated in hepatocellular carcinoma by promoter hypermethylation(2011) Acun, T.; Oztas, E.; Yagci, T.; Yakicier, M.C.Background: Smad interacting protein-1 is a transcription factor that is implicated in transforming growth factor-β/bone morphogenetic protein signaling and a repressor of E-cadherin and human telomerase reverse transcriptase. It is also involved in epithelial-mesenchymal transition and tumorigenesis. However, genetic and epigenetic alterations of SIP1 have not been fully elucidated in cancers. In this study, we investigated mutations and promoter hypermethylation of the SIP1 gene in human hepatocellular carcinomas.Methods: SIP1 expression was analyzed in HCC cell lines and primary tumors in comparison to normal and non-tumor liver tissues by using semi-quantitative RT-PCR, quantitative real-time RT-PCR and immunohistochemistry. Mutation and deletion screening of the SIP1 gene were performed by direct sequencing in HCC-derived cells. Restoration of SIP1 expression was sought by treating HCC cell lines with the DNA methyl transferase inhibitor, 5-AzaC, and the histone deacetylase inhibitor, TSA. SIP1 promoter methylation was analyzed by the combined bisulfite restriction analysis assay in in silico-predicted putative promoter and CpG island regions.Results: We found that the expression of SIP1 was completely lost or reduced in five of 14 (36%) HCC cell lines and 17 of 23 (74%) primary HCC tumors. Immunohistochemical analysis confirmed that SIP1 mRNA downregulation was associated with decreased expression of the SIP1 protein in HCC tissues (82.8%). No somatic mutation was observed in SIP1 exons in any of the 14 HCC cell lines. Combined treatment with DNA methyl transferase and histone deacetylase inhibitors synergistically restored SIP1 expression in SIP1-negative cell lines. Analysis of three putative gene regulatory regions revealed tumor-specific methylation in more than half of the HCC cases.Conclusions: Epigenetic mechanisms contribute significantly to the downregulation of SIP1 expression in HCC. This finding adds a new level of complexity to the role of SIP1 in hepatocarcinogenesis. © 2011 Acun et al; licensee BioMed Central Ltd.Item Open Access Timing of induction of cardiomyocyte differentiation for in vitro cultured mesenchymal stem cells: a perspective for emergencies(NRC Research Press, 2009) Tokçaer-Keskin, Zeynep; Akar, A. R.; Ayaloğlu-Bütün, Fatma; Terzioğlu-Kara, Ece; Durdu, S.; Özyurda, U.; Uğur, M.; Akçalı, Kamil C.Mesenchymal stem cells (MSCs) have the capacity to differentiate into osteoblasts, chondrocytes, adipocytes, myocytes, and cardiomyocytes. Several established methods are presently available for in vitro isolation of MSCs from bone marrow. However, the duration necessary to culture them can be a major handicap to cell-based therapies needed for such urgent cardiovascular conditions as acute myocardial infarction and acute hindlimb ischemia. The best timing of car- diomyocyte differentiation induction after MCS isolation and expansion is still an unresolved issue. Our goal was to investigate the possibility of obtaining functional cardiomyocytes from rat MSC within a shorter time period. We examined MSCs' colony-forming capacity, CD90 and CD34 immunoreactivity during the 14 days of culturing. Cardiomyocyte differentiation was induced by 5-azacytidine. Immunohistochemic staining, together with intracellular Ca2+ measurement experiments, revealed that MSCs do not differentiate into any specific cell lineage but show the characteristics of MSCs on both the 9th and 14th days of the culture. To check the potential for differentiation into cardiomyocytes, experiments with caffeine application and depolarization with KCl were performed. The cells possessed some of the specific biochemical features of contracting cells, with slightly higher capacities on the 14th day. Cells from 9th and 14th days of the culture that were treated with 5-azacytidine had a higher expression of cardiac-specific markers such as troponin I, α-sarcomeric actin, and MEF2D compared with the control groups. This study illustrates that it is possible to get functional cardiomyocytes from in vitro MSC culture in a shorter time period than previously achieved. This reduction in time may provide emergency cases with access to cell-based therapies that may have previously been unavailable.