Browsing by Subject "Average magnitude difference function"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Contact-free measurement of respiratory rate using infrared and vibration sensors(Elsevier BV, 2015) Erden, F.; Alkar, A. Z.; Çetin, A. EnisRespiratory rate is an essential parameter in many practical applications such as apnea detection, patient monitoring, and elderly people monitoring. In this paper, we describe a novel method and a contact-free multi-modal system which is capable of detecting human breathing activity. The multimodal system, which uses both differential pyro-electric infrared (PIR) and vibration sensors, can also estimate the respiratory rate. Vibration sensors pick up small vibrations due to the breathing activity. Similarly, PIR sensors pick up the thoracic movements. Sensor signals are sampled using a microprocessor board and analyzed on a laptop computer. Sensor signals are processed using wavelet analysis and empirical mode decomposition (EMD). Since breathing is almost periodic, a new multi-modal average magnitude difference function (AMDF) is used to detect the periodicity and the period in the processed signals. By fusing the data of two different types of sensors we achieve a more robust and reliable contact-free human breathing activity detection system compared to systems using only one specific type of sensors.Item Open Access Respiratory rate monitoring using infrared sensors(IEEE, 2016) Erden, Fatih; Çetin, A. EnisRespiratory rate is an essential parameter in many practical applications such as patient and elderly people monitoring. In this paper, a novel contact-free system is introduced to detect the human breathing activity. The system, which consists of two pyro-electric infrared (PIR) sensors, is capable of estimating the respiratory rate and detecting the sleep apnea. Sensors' signals corresponding to the thoracic movements of a human being are sampled using a microprocessor and analyzed on a general-purpose computer. Sampled signals are processed using empirical mode decomposition (EMD) and a new average magnitude difference function (AMDF) is used to detect the periodicity and the period of the processed signals. The resulting period, by using the fact that breathing is almost a periodic activity, is monitored as the respiratory rate. The new AMDF provides a way to fuse the data from the multiple sensors and generate a more reliable estimation of the respiratory rate.