BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Automatic classification"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Bilkent University at TRECVID 2005
    (National Institute of Standards and Technology, 2005-11) Aksoy, Selim; Avcı, Akın; Balçık, Erman; Çavuş, Özge; Duygulu, Pınar; Karaman, Zeynep; Kavak, Pınar; Kaynak, Cihan; Küçükayvaz, Emre; Öcalan, Çağdaş; Yıldız, Pınar
    We describe our second-time participation, that includes one high-level feature extraction run, and three manual and one interactive search runs, to the TRECVID video retrieval evaluation. All of these runs have used a system trained on the common development collection. Only visual and textual information were used where visual information consisted of color, texture and edgebased low-level features and textual information consisted of the speech transcript provided in the collection. With the experience gained with our second-time participation, we are in the process of building a system for automatic classification and indexing of video archives.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Classification of human carcinoma cells using multispectral imagery
    (SPIE, 2016) Çınar, U.; Çetin, Y. Y.; Çetin-Atalay, R.; Çetin, A. Enis
    In this paper, we present a technique for automatically classifying human carcinoma cell images using textural features. An image dataset containing microscopy biopsy images from different patients for 14 distinct cancer cell line type is studied. The images are captured using a RGB camera attached to an inverted microscopy device. Texture based Gabor features are extracted from multispectral input images. SVM classifier is used to generate a descriptive model for the purpose of cell line classification. The experimental results depict satisfactory performance, and the proposed method is versatile for various microscopy magnification options.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback