Browsing by Subject "Automatic categorization"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Automatic categorization and summarization of documentaries(Sage Publications Ltd., 2010) Demirtas, K.; Cicekli, N. K.; Cicekli, I.In this paper, we propose automatic categorization and summarization of documentaries using subtitles of videos. We propose two methods for video categorization. The first makes unsupervised categorization by applying natural language processing techniques on video subtitles and uses the WordNet lexical database and WordNet domains. The second has the same extraction steps but uses a learning module to categorize. Experiments with documentary videos give promising results in discovering the correct categories of videos. We also propose a video summarization method using the subtitles of videos and text summarization techniques. Significant sentences in the subtitles of a video are identified using these techniques and a video summary is then composed by finding the video parts corresponding to these summary sentences. © 2010 The Author(s).Item Open Access Automatic categorization of ottoman literary texts by poet and time period(Springer, London, 2012) Can, Ethem F.; Can, Fazlı; Duygulu, Pınar; Kalpaklı, MehmetMillions of manuscripts and printed texts are available in the Ottoman language. The automatic categorization of Ottoman texts would make these documents much more accessible in various applications ranging from historical investigations to literary analyses. In this work, we use transcribed version of Ottoman literary texts in the Latin alphabet and show that it is possible to develop effective Automatic Text Categorization techniques that can be applied to the Ottoman language. For this purpose, we use two fundamentally different machine learning methods: Naïve Bayes and Support Vector Machines, and employ four style markers: most frequent words, token lengths, two-word collocations, and type lengths. In the experiments, we use the collected works (divans) of ten different poets: two poets from five different hundred-year periods ranging from the 15th to 19th century. The experimental results show that it is possible to obtain highly accurate classifications in terms of poet and time period. By using statistical analysis we are able to recommend which style marker and machine learning method are to be used in future studies. © 2012 Springer-Verlag London Limited.