Browsing by Subject "Augers"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Electrical properties from photoinduced charging on Cd-doped (100) surfaces of CuInSe2 epitaxial thin films(AVS Science and Technology Society, 2016) Johnson, N.; Aydogan, P.; Süzer, Şefik; Rockett, A.The photoresponse of Cd-doped CuInSe2 (CIS) epitaxial thin films on GaAs(100) was studied using x-ray photoelectron spectroscopy under illumination from a 532 nm laser between sample temperatures of 28-260 °C. The initial, air-exposed surface shows little to no photoresponse in the photoelectron binding energies, the Auger electron kinetic energies or peak shapes. Heating between 50 and 130 °C in the analysis chamber results in enhanced n-type doping at the surface and an increased light-induced binding energy shift, the magnitude of which persists when the samples are cooled to room temperature from 130 °C but which disappears when cooling from 260 °C. Extra negative charge trapped on the Cu and Se atoms indicates deep trap states that dissociate after cooling from 260 °C. Analysis of the Cd modified Auger parameter under illumination gives experimental verification of electron charging on Cd atoms thought to be shallow donors in CIS. The electron charging under illumination disappears at 130 °C but occurs again when the sample is cooled to room temperature.Item Open Access Unraveling the ultralow threshold stimulated emission from CdZnS/ZnS quantum dot and enabling high ‐ Q microlasers(Wiley-VCH Verlag, 2015) Wang Y.; Fong, K. E.; Yang, S.; Ta, V.; Gao, Y.; Wang, Z.; Nalla, V.; Demir, Hilmi Volkan; Sun, H.The newly engineered ternary CdZnS/ZnS colloidal quantum dots (CQDs) are found to exhibit remarkably high photoluminescence quantum yield and excellent optical gain properties. However, the underlying mechanisms, which could offer the guidelines for devising CQDs for optimized photonic devices, remain undisclosed. In this work, through comprehensive steady-state and time-resolved spectroscopy studies on a series of CdZnS-based CQDs, we unambiguously clarify that CdZnS-based CQDs are inherently superior optical gain media in the blue spectral range due to the slow Auger process and that the ultralow threshold stimulated emission is enabled by surface/interface engineering. Furthermore, external cavity-free high-Q quasitoroid microlasers were produced from self-assembly of CdZnS/ZnS CQDs by facile inkjet printing technique. Detailed spectroscopy analysis confirms the whispering gallery mode lasing mechanism of the quasitoroid microlasers. This tempting microlaser fabrication method should be applicable to other solution-processed gain materials, which could trigger broad research interests. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA.