Browsing by Subject "Atomic force microscopes"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access The formation and characterization of cyclodextrin functionalized polystyrene nanofibers produced by electrospinning(2009) Uyar, Tamer; Havelund, R.; Hacaloglu J.; Zhou X.; Besenbacher F.; Kingshott P.Polystyrene (PS) nanofibers containing the inclusion complex forming beta-cyclodextrin (β-CD) were successfully produced by electrospinning aimed at developing functional fibrous nanowebs. By optimization of the electrospinning parameters, which included varying the relative concentration of PS and β-CD in the solutions, bead-free fibers were produced. Homogeneous solutions of β-CD and PS in dimethylformamide (DMF) were used with concentrations of PS varying from 10% to 25% (w/v, with respect to DMF), and β-CD concentrations of 1% to 50% (w/w, with respect to PS). The presence of β-CD facilitated the production of bead-free PS fibers even from lower polymer concentrations as a result of the higher conductivity of the PS/CD solutions. The morphology and the production of bead-free PS/CD fibers were highly dependent on the β-CD contents. Transmission electron microscope (TEM) and atomic force microscope (AFM) images showed that incorporation of β-CD yielded PS fibers with rougher surfaces. Thermogravimetric analysis (TGA) and direct insertion probe pyrolysis mass spectroscopy (DP-MS) results confirmed the presence of β-CD in the PS fibers. X-ray diffraction (XRD) spectra of the fibers indicated that the β-CD molecules are distributed within the PS matrix without any phase separated crystalline aggregates up to 40% (w/w) β-CD loading. Furthermore, chemical analyses by Fourier transform infrared (FTIR) spectroscopy studies confirm that β-CD molecules are located within the PS fiber matrix. Finally, preliminary investigations using x-ray photoelectron spectroscopy (XPS) and time-of-flight static secondary ion mass spectrometry (ToF-static-SIMS) show the presence of the cyclodextrin molecules in the outer molecular layers of the fiber surfaces. The XPS and ToF-SIMS findings indicate that cyclodextrin functionalized PS webs would have the potential to be used as molecular filters and/or nanofilters for the purposes of filtration/purification/separation owing to surface associated β-CD molecules which have inclusion complexation capability. © 2009 IOP Publishing Ltd.Item Open Access High‐speed atomic force microscopy using an integrated actuator and optical lever detection(A I P Publishing LLC, 1996-09) Manalis, S. R.; Minne, S. C.; Atalar, Abdullah; Quate, C. F.A new procedure for high‐speed imaging with the atomic force microscope that combines an integrated ZnO piezoelectric actuator with an optical lever sensor has yielded an imaging bandwidth of 33 kHz. This bandwidth is primarily limited by a mechanical resonance of 77 kHz when the cantilever is placed in contact with a surface. Images scanned with a tip velocity of 1 cm/s have been obtained in the constant force mode by using the optical lever to measure the cantilever stress. This is accomplished by subtracting an unwanted deflection produced by the actuator from the net deflection measured by the photodiode using a linear correction circuit. We have verified that the tip/sample force is constant by monitoring the cantilever stress with an implanted piezoresistor.