Browsing by Subject "Atmospheric temperature"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Imaging capability of pseudomorphic high electron mobility transistors, AlGaN/GaN, and Si micro-Hall probes for scanning Hall probe microscopy between 25 and 125 °c(American Vacuum Society, 2009) Akram, R.; Dede, M.; Oral, A.The authors present a comparative study on imaging capabilities of three different micro-Hall probe sensors fabricated from narrow and wide band gap semiconductors for scanning hall probe microscopy at variable temperatures. A novel method of quartz tuning fork atomic force microscopy feedback has been used which provides extremely simple operation in atmospheric pressures, high-vacuum, and variable-temperature environments and enables very high magnetic and reasonable topographic resolution to be achieved simultaneously. Micro-Hall probes were produced using optical lithography and reactive ion etching process. The active area of all different types of Hall probes were 1×1 μ m2. Electrical and magnetic characteristics show Hall coefficient, carrier concentration, and series resistance of the hall sensors to be 10 mG, 6.3× 1012 cm-2, and 12 k at 25 °C and 7 mG, 8.9× 1012 cm-2 and 24 k at 125 °C for AlGaNGaN two-dimensional electron gas (2DEG), 0.281 mG, 2.2× 1014 cm-2, and 139 k at 25 °C and 0.418 mG, 1.5× 1014 cm-2 and 155 k at 100 °C for Si and 5-10 mG, 6.25× 1012 cm-2, and 12 k at 25 °C for pseudomorphic high electron mobility transistors (PHEMT) 2DEG Hall probe. Scan of magnetic field and topography of hard disc sample at variable temperatures using all three kinds of probes are presented. The best low noise image was achieved at temperatures of 25, 100, and 125 °C for PHEMT, Si, and AlGaNGaN Hall probes, respectively. This upper limit on the working temperature can be associated with their band gaps and noise associated with thermal activation of carriers at high temperatures.Item Open Access Raman and TEM studies of Ge nanocrystal formation in SiOx: Ge/SiOx multilayers(Wiley, 2007) Dana, Aykutlu; Aǧan, S.; Tokay, S.; Aydınlı, Atilla; Finstad, T. G.Alternating germanosilicate-siliconoxide layers of 10-30 nm thickness were grown on Si substrates by plasma enhanced chemically vapor deposition (PECVD). The compositions of the grown films were determined by X-ray photoelectron spectroscopy measurements. The films were annealed at temperatures varying from 670 to 1000°C for 5 to 45 minutes under nitrogen atmosphere. High resolution cross section TEM images, electron diffraction and electron energy-loss spectroscopy as well as energy-dispersive X-ray analysis (EDAX) data confirm presence of Ge nanocrystals in each layer. The effect of annealing on the Ge nanocrystal formation in multilayers was investigated by Raman spectroscopy and Transmission Electron Microscopy (TEM). As the annealing temperature is raised to 850°C, single layer of Ge nanocrystals observed at lower annealing temperatures is transformed into a double layer with the smaller sized nanocrystals closer to the substrate SiO2 interface.