BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Asynchronous transfer mode (ATM)"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Performance of two-level forward error correction for lost cell recovery in ATM networks
    (1995) Oğuz, Nihat Cem
    The major source of errors in Asynchronous Transfer Mode (ATM.) networks is expected to be buffer overflow during congestion, resulting in cell losses. The large ratio of the end-to-end propagation time for a typical connection to the cell transmission time makes lost cell recovery by means of retransmissionbased error control techniques impractical especially for delay-sensitive highspeed applications. As has been shown by many authors, forward error correction is a promising alternative since it can improve end-to-end reliability without requiring retransmissions. This thesis discusses the use of a two-level forward error correction scheme for virtual channel and virtual path connections in ATM networks. The performance of the scheme, which exploits erasure correcting simple and interleaved block codes simultaneously, is studied via both analyses and simulations. For a single-node virtual channel connection, a novel and accurate discrete-time analytical cell loss model is developed first. Based on this model, the reduction in the cell loss rate achieved by two-level coding is then investigated extensively via iterative computational methods. For the case of a four-node, long-distance virtual channel connection that cannot tolerate any loss, the use of the two-level coding scheme in conjunction with an automatic repeat request mechanism is considered, and detailed simulations are made to quantify the improvement achieved in the delay-throughput performance. The results obtained indicate substantial performance improvements even for very high network loads provided that an appropriate coding technique is chosen according to the traffic characteristics. Typically, bursty traffic requires code interleaving be used for effective loss recovery whereas small-latency simple block codes suffice for random traffic. Two-level coding, which is shown to effectively combine the fast and burst loss recovery capabilities of the individual coding techniques, is attractive for traffic streams of unpredictable or time-varying characteristics.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A simulation study on congestion control for the ATM ABR service
    (1997) Ülkü, Sezer
    In this thesis, we have performed a simulation study on congestion control for the asynchronous transfer mode (ATM) available bit rate (ABR) service. Even though ABR is primarily intended for applications that can not describe their characteristics appropriately, it can be used by a wider range of applications since it provides some minimal guarantees for bandwidth. For the simulations, the ABR mechanisms specified in The ATM Forum Specification, Version 4.0 have been implemented to a great extent. Relative marking, enhanced proportional rate control (EPRCA) and efficient rate allocation algorithms (ERAA) have been realized, and their performances at ATM, TCP and application layers have been examined based on robustness, efficiency, fairness, buffer requirements and response time. The beat-down problem and large buffer requirements for the relative marking scheme have been illustrated. EPRCA was shown to be sensitive to parameters and result in oscillations in allowed cell rate. Finally, ERAA was shown to work efficiently with small buffers.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback