Browsing by Subject "Association rules"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Association rules for supporting hoarding in mobile computing environments(IEEE, 2000) Saygın, Yücel; Ulusoy, Özgür; Elmagarmid, A. K.One of the features that a mobile computer should provide is disconnected operation which is performed by hoarding. The process of hoarding can be described as loading the data items needed in the future to the client cache prior to disconnection. Automated hoarding is the process of predicting the hoard set without any user intervention. In this paper, we describe an application independent and generic technique for determining what should be hoarded prior to disconnection. Our method utilizes association rules that are extracted by data mining techniques for determining the set of items that should be hoarded to a mobile computer prior to disconnection. The proposed method was implemented and tested on synthetic data to estimate its effectiveness. Performance experiments determined that the proposed rule-based methods are effective in improving the system performance in terms of the cache hit ratio of mobile clients especially for small cache sizes.Item Open Access A constraint-based incremental approach for update of large itemsets(2001-08) Demir, EnginItem Open Access Modeling interestingness of streaming association rules as a benefit-maximizing classification problem(Elsevier BV, 2009) Aydın, T.; Güvenir, H. A.In a typical application of association rule learning from market basket data, a set of transactions for a fixed period of time is used as input to rule learning algorithms. For example, the well-known Apriori algorithm can be applied to learn a set of association rules from such a transaction set. However, learning association rules from a set of transactions is not a one time only process. For example, a market manager may perform the association rule learning process once every month over the set of transactions collected through the last month. For this reason, we will consider the problem where transaction sets are input to the system as a stream of packages. The sets of transactions may come in varying sizes and in varying periods. Once a set of transactions arrive, the association rule learning algorithm is executed on the last set of transactions, resulting in new association rules. Therefore, the set of association rules learned will accumulate and increase in number over time, making the mining of interesting ones out of this enlarging set of association rules impractical for human experts. We refer to this sequence of rules as "association rule set stream" or "streaming association rules" and the main motivation behind this research is to develop a technique to overcome the interesting rule selection problem. A successful association rule mining system should select and present only the interesting rules to the domain experts. However, definition of interestingness of association rules on a given domain usually differs from one expert to another and also over time for a given expert. This paper proposes a post-processing method to learn a subjective model for the interestingness concept description of the streaming association rules. The uniqueness of the proposed method is its ability to formulate the interestingness issue of association rules as a benefit-maximizing classification problem and obtain a different interestingness model for each user. In this new classification scheme, the determining features are the selective objective interestingness factors related to the interestingness of the association rules, and the target feature is the interestingness label of those rules. The proposed method works incrementally and employs user interactivity at a certain level. It is evaluated on a real market dataset. The results show that the model can successfully select the interesting ones. © 2008 Elsevier B.V. All rights reserved.Item Open Access Processing count queries over event streams at multiple time granularities(Elsevier Inc., 2006-07-22) Ünal, A.; Saygın, Y.; Ulusoy, ÖzgürManagement and analysis of streaming data has become crucial with its applications to web, sensor data, network traffic data, and stock market. Data streams consist of mostly numeric data but what is more interesting are the events derived from the numerical data that need to be monitored. The events obtained from streaming data form event streams. Event streams have similar properties to data streams, i.e., they are seen only once in a fixed order as a continuous stream. Events appearing in the event stream have time stamps associated with them at a certain time granularity, such as second, minute, or hour. One type of frequently asked queries over event streams are count queries, i.e., the frequency of an event occurrence over time. Count queries can be answered over event streams easily, however, users may ask queries over different time granularities as well. For example, a broker may ask how many times a stock increased in the same time frame, where the time frames specified could be an hour, day, or both. Such types of queries are challenging especially in the case of event streams where only a window of an event stream is available at a certain time instead of the whole stream. In this paper, we propose a technique for predicting the frequencies of event occurrences in event streams at multiple time granularities. The proposed approximation method efficiently estimates the count of events with a high accuracy in an event stream at any time granularity by examining the distance distributions of event occurrences. The proposed method has been implemented and tested on different real data sets including daily price changes in two different stock exchange markets. The obtained results show its effectiveness. © 2005 Elsevier Inc. All rights reserved.Item Open Access Updating large itemsets with early pruning(1999-07) Ayan, Necip FazılWith the computerization of many business and government transactions, huge amounts of data have been stored in computers. The e.xisting database systems do not provide the users with the necessary tools and functionalities to capture all stored information easily. Therefore, automatic knowledge discovery techniques have been developed to capture and use the voluminous information hidden in large databases. Discovery of association rules is an important class of data mining, which is the process of extracting interesting and frequent patterns from the data. Association rules aim to capture the co-occurrences of items, and have wide applicability in many areas. Discovering association rules is based on the computation of large itemsets (set of items that occur frequently in the database) efficiently, and is a computationally expensive operation in large databases. Thus, maintenance of them in large dynamic databases is an important issue. In this thesis, we propose an efficient algorithm, to update large itemsets by considering the set of previously discovered itemsets. The main idea is to prune an itemset as soon as it is understood to be small in the updated database, and to keep the set of candidate large itemsets as small as possible. The proposed algorithm outperforms the existing update algorithms in terms of the number of scans over the databases, and the number of candidate large itemsets generated and counted. Moreover, it can be applied to other data mining tasks that are based on large itemset framework easily.