Browsing by Subject "Array elements"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access CMUT array element in deep-collapse mode(IEEE, 2011) Olcum, Semih; Yamaner F.Y.; Bozkurt, A.; Köymen, Hayrettin; Atalar, AbdullahCollapse and deep-collapse mode of operations have boosted the pressure outputs of capacitive micromachined ultrasonic transducers (CMUTs) considerably. In this work, we demonstrate a CMUT element operating in the deep-collapse mode with 25 V pulse excitation and without the effects of charge trapping. The fabricated CMUT element consists of 4 by 4 circular cells with 20 μm radius and 1 μm thick plates suspended over a 50 nm cavity. The overall size of the element is 0.190 mm by 0.19 mm. The collapse voltage of the plates is measured to be approximately 3V. By driving the CMUTs with 25V pulses in the deep-collapse mode without any bias, we achieved 1.2 MPa peak-to-peak pressure output on the surface of the CMUT element with a center frequency of 9 MHz and 100% fractional bandwidth. We applied 1000 consecutive electrical pulses with alternating polarity to the element and witnessed no change in the transmitted acoustic pulse. © 2011 IEEE.Item Open Access Optimization of linear wire antenna arrays to increase MIMO capacity using swarm intelligence(Institution of Engineering and Technology, 2007) Olgun, Uğur; Tunç, Celal Alp; Aktaş, Defne; Ertürk, Vakur B.; Altıntaş, AyhanFree standing linear arrays (FSLA) are analyzed and optimized to increase MIMO capacity. A MIMO channel model based on electric fields is used. The effects of mutual interactions among the array elements are included into the channel matrix using method of moments (MoM) based full-wave solvers. A tool to design an antenna array of superior MIMO capacity for any specified volume is developed. Particle swarm optimization is used as the main engine for the optimization tasks of the tool. Uniform linear arrays, uniform circular arrays and non-uniform arrays are analyzed and compared in terms of their channel capacity.Item Open Access Radiation impedance and equivalent circuit for immersed CMUT array element(IEEE, 2006-10) Şenlik, Muhammed N.; Atalar, Abdullah; Köymen, Hayrettin; Olcum, SelimIn this paper, we present equivalent circuit for immersed capacitive micromachined ultrasonic transducers (cMUT), based on an accurate parametric model. We also present an accurate approximation for the radiation impedance cMUT. We develop a design approach for immersed cMUTs using the equivalent circuit. We demonstrate that the equivalent circuit predicts the performance of a cMUT array element composed of many cells in parallel. We investigate the applicability of the equivalent circuit in designing cMUT array elements. © 2006 IEEE.Item Open Access Simulation of a digital communication system(IEEE, 2005-09) Güngör, A.; Arıkan, F.; Arıkan, OrhanIn this paper, basic components of a digital communication system are simulated by a computer program. The simulation program is modular and flexible to incorporate any future additions and updates. The simulation program allows the user to choose from various channel models, transmitter and receiver antenna systems, modulation and channel coding techniques. A communication system is defined by various parameters including the source, coding, modulation, antenna systems. In order to facilitate the input of these parameters and follow the flow of the simulation, the Graphical User Interface (GUI) is designed for convenience to the user. The input parameters can both be entered from the GUI or from prepared user files. The major contribution of this simulation system to the existing communication simulators is the addition of flexible antenna systems both at the transmitting and receiving ends. With this simulation program, the antenna arrays can be located anywhere on Earth, on any platform and array elements can be placed on the platform by any desired orientation. The simulation program results are compared with both theoretical computations and commercial simulator results and excellent agreement is observed in both cases.