Browsing by Subject "Aromatization"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Cyclodextrin-functionalized mesostructured silica nanoparticles for removal of polycyclic aromatic hydrocarbons(Academic Press Inc., 2017) Topuz, F.; Uyar, T.Polycyclic aromatic hydrocarbons (PAHs) are the byproducts of the incomplete combustion of carbon-based fuels, and have high affinity towards DNA strands, ultimately exerting their carcinogenic effects. They are ubiquitous environmental contaminants, and can accumulate on tissues due to their lipophilic nature. In this article, we describe a novel concept for PAH removal from aqueous solutions using cyclodextrin-functionalized mesostructured silica nanoparticles (CDMSNs) and pristine mesostructured silica nanoparticles (MSNs). The adsorption applications of MSNs are greatly restricted due to the absence of surface functional groups on such particles. In this regard, cyclodextrins can serve as ideal functional molecules with their toroidal, cone-type structure, capable of inclusion-complex formation with many hydrophobic molecules, including genotoxic PAHs. The CDMSNs were synthesized by the surfactant-templated, NaOH-catalyzed condensation reactions of tetraethyl orthosilicate (TEOS) in the presence of two different types of cyclodextrin (i.e. hydroxypropyl-β-cyclodextrin (HP-β-CD) and native β-cyclodextrin (β-CD)). The physical incorporation of CD moieties was supported by XPS, FT-IR, NMR, TGA and solid-state 13C NMR. The CDMSNs were treated with aqueous solutions of five different PAHs (e.g. pyrene, anthracene, phenanthrene, fluorene and fluoranthene). The functionalization of MSNs with cyclodextrin moieties significantly boosted the sorption capacity (q) of the MSNs up to ∼2-fold, and the q ranged between 0.3 and 1.65 mg per gram CDMSNs, of which the performance was comparable to that of the activated carbon.Item Open Access Genetically encoded conductive protein nanofibers secreted by engineered cells(Royal Society of Chemistry, 2017-06) Kalyoncu, E.; Ahan, R. E.; Olmez, T. T.; Safak Seker, U. O.Bacterial biofilms are promising tools for functional applications as bionanomaterials. They are synthesized by well-defined machinery, readily form fiber networks covering large areas, and can be engineered for different functionalities. In this work, bacterial biofilms have been engineered for use as conductive biopolymers to interface with electrodes and connect bacterial populations to electronic gadgets. Bacterial biofilms are designed with different conductive peptide motifs, as the aromatic amino acid content of fused peptide motifs has been suggested to contribute to electronic conductivity by influencing monomer stacking behavior. To select the best candidates for constructing conductive peptide motifs, conductivity properties of aromatic amino acids are measured using two different fiber scaffolds, an amyloid-like fiber (ALF) forming peptide, and the amyloidogenic R5T peptide of CsgA protein. Three repeats of aromatic amino acids are added to fiber-forming peptide sequences to produce delocalized π clouds similar to those observed in conductive polymers. Based on the measurements, tyrosine and tryptophan residues provide the highest conductivity. Therefore, the non-conductive E. coli biofilm is switched into a conductive form by genetically inserted conductive peptide motifs containing different combinations of tyrosine and tryptophan. Finally, synthetic biofilm biogenesis is achieved with conductive peptide motifs using controlled biofilm production. Conductive biofilms on living cells are formed for bioelectronics and biosensing applications.