Browsing by Subject "Antimicrobial activity"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Multivalent presentation of cationic peptides on supramolecular nanofibers for antimicrobial activity(American Chemical Society, 2017) Beter, M.; Kara, H. K.; Topal, A. E.; Dana, A.; Tekinay, A. B.; Güler, Mustafa O.Noncovalent and electrostatic interactions facilitate the formation of complex networks through molecular self-assembly in biomolecules such as proteins and glycosaminoglycans. Self-assembling peptide amphiphiles (PA) are a group of molecules that can form nanofibrous structures and may contain bioactive epitopes to interact specifically with target molecules. Here, we report the presentation of cationic peptide sequences on supramolecular nanofibers formed by self-assembling peptide amphiphiles for cooperative enhanced antibacterial activity. Antibacterial properties of self-assembled peptide nanofibers were significantly higher than soluble peptide molecules with identical amino acid sequences, suggesting that the tandem presentation of bioactive epitopes is important for designing new materials for bactericidal activity. In addition, bacteria were observed to accumulate more rapidly on peptide nanofibers compared to soluble peptides, which may further enhance antibacterial activity by increasing the number of peptide molecules interacting with the bacterial membrane. The cationic peptide amphiphile nanofibers were observed to attach to bacterial membranes and disrupt their integrity. These results demonstrate that short cationic peptides show a significant improvement in antibacterial activity when presented in the nanofiber form.Item Open Access S-carboxymethylcysteine inhibits the attachment of Streptococcus pneumoniae to human pharyngeal epithelial cells(Elsevier, 2003) Cakan, G.; Turkoz, M.; Turan, T.; Ahmed, K.; Nagatake, T.Streptococcus pneumoniae causes respiratory and other invasive infections. Increased resistance of this bacterium to antibiotics necessitates new approaches to the treatment of infections. Attachment of bacteria to human pharyngeal epithelial cells is the initial step in the pathogenesis of infection and S-carboxymethylcysteine (S-CMC) can modulate the attachment of Moraxella catarrhalis and nontypable Haemophilus influenzae to epithelial cells. Unlike these two, S. pneumoniae is gram-positive and has a well-defined capsule. Here we examined the effects of S-CMC on the attachment and detachment of S. pneumoniae to human pharyngeal epithelial cells in vitro. Treatment of these cells with S-CMC significantly reduced the number of attached S. pneumoniae. S-CMC also resulted in a significant increase in the detachment of already attached S. pneumoniae to epithelial cells. In addition, treatment of S. pneumoniae with S-CMC significantly reduced their ability to attach to epithelial cells, but not the number of viable bacteria. Our study shows that S-CMC modulates the attachment of S. pneumoniae to human pharyngeal epithelial cells by acting both on cells and bacteria. © 2003 Elsevier Science Ltd. All rights reserved.