BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Anomalous dispersion"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    33-fs Yb-fiber laser comb locked to Cs-atomic clock
    (IEEE, 2013) Şenel, Çağrı; Hamid, R.; Erdoğan, C.; Çelik, M.; Kara, O.; İlday, Fatih Ömer
    Despite the prevalence of fiber frequency combs around 1.5 μm, few fully stabilized frequency combs have been demonstrated around 1.0 μm, despite the generally superior performance of Yb-fiber lasers compared to Er-fiber lasers. Short pulses are to generate coherent supercontinuum using anomalous dispersion regime of microstructured fibers. Near-zero cavity dispersion is highly desirable for low-noise frequency comb performance. Here, we report a Yb-doped fiber laser that operates at net-zero group-velocity dispersion and produces pulses that can be compressed externally to 33-fs. The frequency comb generated by this system is repetition-and carrier-envelope-phase-locked to Cs atomic clocks. The laser oscillator design is based on a novel algorithmic methodology, which allows us to design cavities to meet specific requirements; in this case, there was the need to generate as short pulses as possible, while having several nJ of pulse energy and the cavity at strictly zero total dispersion.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    All-fiber-integrated soliton-similariton laser with in-line fiber filter
    (Optical Society of America, 2012-08-16) Zhang, Z.; Öktem, B.; Ilday, F. Ö.
    We demonstrate an all-fiber-integrated Er-doped fiber laser operating in the soliton-similariton mode-locking regime. In the similariton part of the cavity, a self-similarly evolving parabolic pulse with highly linear chirp propagates in the presence of normal dispersion. Following an in-line fiber-based birefringent filter, the pulse evolves into a soliton in the part of the cavity with anomalous dispersion. The similariton and the soliton pulses are dechirped to 75.5 and 167.2 fs, respectively, outside of the cavity. Mode-locked operation is very robust, owing to the influence of the two similariton and soliton attractors that predominate each half of the laser cavity. The experimental results are supported with numerical simulations, which provide good agreement.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Sub-50 fs all-fiber Yb-doped laser with anomalous-dispersion photonic crystal fiber
    (IEEE, 2013) Zhang, Zewang; Cenel, C.; Hamid, R.; İlday, F. Ömer
    An intense research effort has been channelled into improving mode-locked Yb-fiber oscillators in recent years. Despite efforts in all-normal dispersion oscillators, dispersion management is evidently necessary to reach pulse durations below 50 fs. This is implemented most commonly with bulk optical components in Yb-doped fiber lasers. Increased robustness remains a valuable trait, for which all-fiber-integration is highly desirable. Photonic crystal fibers (PCF) with anomalous dispersion have small mode field diameters, enhancing nonlinear effects and usually are birefringent. The first mode-locked laser to incorporate a PCF was reported in 2002 [1]. However, mode-locking was not self-starting owing to the residual birefringence of the PCF Since then, a number of dispersion-managed Yb-doped fiber lasers using PCFs and all-fiber-integrated lasers have been reported. After 10 years, no all-fiber-integrated Yb-fiber laser has been demonstrated to support pulses below 60 fs [2]. © 2013 IEEE.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback