Browsing by Subject "Amplitude modulation"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Comparison of the CAF-DF and sage algorithms in multipath channel parameter estimation(IEEE, 2008-07) Güldoğan, M. Burak; Arıkan, OrhanIn this paper, performance of the recently proposed Cross Ambiguity Function - Direction Finding (CAF-DF) technique is compared with the Space Alternating Generalized Expectation Maximization (SAGE) technique. The CAF-DF, iteratively estimates direction of arrival (DOA), time-delay, Doppler shift and amplitude corresponding to each impinging signal onto an antenna array by utilizing the cross ambiguity function. On synthetic signals, based on Monte Carlo trials, performances of the algoritms are tested in terms of root Mean Squared Error (rMSE) at different Signal-to-Noise Ratios (SNR). Cramer-Rao lower bound is included for statistical comparisons. Simulation results indicate the superior performance of the CAF-DF technique over SAGE technique for low and medium SNR values. © 2008 IEEE.Item Open Access Full-complex amplitude modulation with binary spatial light modulators(Optical Society of America, 2011-10-19) Ulusoy, E.; Onural, L.; Özaktaş, Haldun M.Imperfections and nonrobust behavior of practical multilevel spatial light modulators (SLMs) degrade the performance of many proposed full-complex amplitude modulation schemes. We consider the use of more robust binary SLMs for this purpose. We propose a generic method, by which, out of K binary (or 1 bit) SLMs of size M × N, we effectively create a new 2K -level (or K bit) SLM of size M × N. The method is a generalization of the well-known concepts of bit plane representation and decomposition for ordinary gray scale digital images and relies on forming a properly weighted superposition of binary SLMs. When K is sufficiently large, the effective SLM can be regarded as a full-complex one. Our method is as efficient as possible from an information theoretical perspective. A 4f system is discussed as a possible optical implementation. This 4f system also provides a means for eliminating the undesirable higher diffraction orders. The components of the 4f system can easily be customized for different production technologies.Item Open Access A multi-modal video analysis approach for car park fire detection(Elsevier, 2013) Verstockt, S.; Hoecke, S. V.; Beji, T.; Merci, B.; Gouverneur, B.; Çetin, A. Enis; Potter, P. D.; Walle, R. V. D.In this paper a novel multi-modal flame and smoke detector is proposed for the detection of fire in large open spaces such as car parks. The flame detector is based on the visual and amplitude image of a time-of-flight camera. Using this multi-modal information, flames can be detected very accurately by visual flame feature analysis and amplitude disorder detection. In order to detect the low-cost flame related features, moving objects in visual images are analyzed over time. If an object possesses high probability for each of the flame characteristics, it is labeled as candidate flame region. Simultaneously, the amplitude disorder is also investigated. Also labeled as candidate flame regions are regions with high accumulative amplitude differences and high values in all detail images of the amplitude image's discrete wavelet transform. Finally, when there is overlap of at least one of the visual and amplitude candidate flame regions, fire alarm is raised. The smoke detector, on the other hand, focuses on global changes in the depth images of the time-of-flight camera, which do not have significant impact on the amplitude images. It was found that this behavior is unique for smoke. Experiments show that the proposed detectors improve the accuracy of fire detection in car parks. The flame detector has an average flame detection rate of 93%, with hardly any false positive detection, and the smoke detection rate of the TOF based smoke detector is 88%.Item Open Access Resonant harmonic response in tapping-mode atomic force microscopy(American Physical Society, 2004) Sahin, O.; Quate, C. F.; Solgaard, O.; Atalar, AbdullahHigher harmonics in tapping-mode atomic force microscopy offers the potential for imaging and sensing material properties at the nanoscale. The signal level at a given harmonic of the fundamental mode can be enhanced if the cantilever is designed in such a way that the frequency of one of the higher harmonics of the fundamental mode (designated as the resonant harmonic) matches the resonant frequency of a higher-order flexural mode. Here we present an analytical approach that relates the amplitude and phase of the cantilever vibration at the frequency of the resonant harmonic to the elastic modulus of the sample. The resonant harmonic response is optimized for different samples with a proper design of the cantilever. It is found that resonant harmonics are sensitive to the stiffness of the material under investigation.Item Open Access Spatio-temporal evolution of ultrashort pulses in graded-index multimode fiber at normal dispersion(IEEE, 2017) Teğin, Uğur; Ortaç, BülendSummary form only given. A novel nonlinear phenomenon at normal dispersion regime inside of graded-index multimode fiber (GRIN MMF), geometric parametric instability (GPI), can be observed while propagating beam experiences spatio-temporal evolution. Longhi theoretically predicted this GPI and associated with periodic refocusing inside GRIN MMF [1]. Later his work is verified by Krupa et al. [2] and Lopez-Galmiche et al. [3] and discrete GPI sidebands are reported with more than 120 THz detuning from to pump frequency. These studies focused on quasi-continues pulse evolution in GRIN MMF and the spatio-temporal evolution of femtosecond pulses at normal dispersion regime remains unknown. Here, we present the first experimental observation of GPI sidebands with ultrashort pulses in GRIN MMF. To gain detailed understanding, we perform numerical simulations and theoretical calculations and obtained results are well-aligned with experimental observations.