BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Amine PIM-1"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Amine modified electrospun PIM-1 ultrafine fibers for an efficient removal of methyl orange from an aqueous system
    (Elsevier, 2018) Satılmış, B.; Uyar, Tamer
    Polymers of Intrinsic Microporosity (PIM-1) is a promising material for adsorption and separation applications. While PIM-1 displays high affinity for neutral species, it shows lack of interaction with charged molecules in an aqueous system due to non-polar nature of it. Functionalization of PIM-1 provides an advantage of tailoring the interaction ability as well as the adsorption performance of PIM-1 towards target pollutants. In this study, electrospun Polymer of Intrinsic Microporosity (PIM-1) fibrous membrane (PIM-FM) was reacted with borane dimethyl sulfide complex to obtain amine modified PIM-1 fibrous membrane (AM-PIM-FM). Furthermore, PIM-1 film, which is referred as PIM-1 dense membrane (PIM-DM), was also modified under the same conditions as a control material. Structural analyses have confirmed that nitrile groups of PIM-1 have been fully converted to amine group as a result of the reduction reaction. Average fiber diameter of parent PIM-1 fibers was found 2.3 ± 0.3 μm, and it remained almost the same after the amine modification. In addition, no physical damage has been observed on fiber structure based on the SEM analysis. Both amine modified PIM-1 dense and fibrous membranes became insoluble in common organic solvents. Before the modification, water contact angle of PIM-FM was 138 ± 2° which also remained almost the same after the modification, showing water contact angle of 131 ± 8°. The insolubility along with amine functionality make membranes promising materials for adsorption of anionic dyes from wastewater. Here, dye (i.e. Methyl Orange) removal ability of AM-PIM-FM from an aqueous system was investigated and compared with parent PIM-1 (PIM-FM) as well as dense membrane form (AM-PIM-DM). AM-PIM-FM shows extremely higher adsorption capacity than that of PIM-FM and AM-PIM-DM. The maximum adsorption capacity of AM-PIM-FM was found 312.5 mg g−1 for Methyl Orange. Langmuir isotherm model was found more favorable for the adsorption. AM-PIM-FM was employed effectively in continuous adsorption/desorption studies for several times without having any damage on fiber morphology using batch adsorption process. Furthermore, AM-PIM-FM was successfully used as a molecular filter for the removal of methyl orange from an aqueous system. The results indicate that AM-PIM-FM could be a promising adsorbent for removal of anionic molecules from an aqueous system.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback