Browsing by Subject "Aluminum alloys"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Electron initiated impact ionization in AlGaN alloys(Institute of Physics, 2002) Bulutay, C.Detailed impact ionization (II) analysis of electrons is presented for AlGaN alloys as a vital resource for solar-blind avalanche photodiode and high power transistor applications. Necessary ingredients for the II characterization are supplied from a recent experiment on the GaN end, and a Keldysh analysis for the AlN end, of the alloy AlGaN. High-field electron dynamics are simulated using an ensemble Monte Carlo framework, accounting for all valleys in the lowest two conduction bands, obtained from accurate empirical pseudopotential band structure computations. The effect of alloy scattering on II is considered and observed to be significant. For any AlxGa1-xN alloy, the electron II coefficients are found to obey the form, A exp(-K/F), for the electric field, F.Item Open Access Engineered ultraviolet InGaN/AlGaN multiple-quantum-well structures for maximizing cathodoluminescence efficiency(American Institute of Physics Inc., 2022-01-04) Zheng, Haiyang; Sharma, Vijay KumarWe demonstrate a systematic way to understand and select the accelerating voltage for maximizing cathodoluminescence (CL) by correlating the carrier diffusion length with the efficiency of ultraviolet (UV) InGaN/AlGaN multiple quantum wells (MQWs). We showed that the absorption of MQWs benefits from the absorbed energy within the diffusion length below the MQWs. With this understanding, we have achieved good agreement between the experimental data of and the Monte Carlo (CASINO) simulations on the dependence of acceleration voltage and QW number on InGaN/AlGaN MQW structures. These findings indicate that CL-based UV generation from carefully engineered III-N MQW structures with an appropriate number of QWs is highly promising. The understanding and application of this work can be extended to electron-beam pumped devices emitting in deep-UV (200-280 nm) wavelengths. © 2022 Author(s).Item Open Access Micromachined III-V cantilevers for AFM-tracking scanning Hall probe microscopy(Institute of Physics, 2003) Brook, A. J.; Bending, S. J.; Pinto, J.; Oral, A.; Ritchie, D.; Beere, H.; Springthorpe, A.; Henini, M.In this paper we report the development of a new III-V cantilever-based atomic force sensor with piezoresistive detection and an integrated Hall probe for scanning Hall probe microscopy. We give detailed descriptions of the fabrication process and characterization of the new integrated sensor, which will allow the investigation of magnetic samples with no sample preparation at both room and cryogenic temperatures. We also introduce a novel piezoresistive material based on the ternary alloy n+-Al0.4Ga0.6As which allows us to achieve a cantilever deflection sensitivity ΔR/(RΔz) = 2 × 10-6 Å-1 at room temperature.