Browsing by Subject "Aluminum alloy"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Dealing with Uncertainties in Fatigue Strength Using Deep Rolling(Springer, 2021-05-27) Yüksel, Berkay; Görtan, Mehmet OkanMechanical properties inherently possess uncertainties. Among these properties, fatigue behavior data generally shows significant scatter which introduces a challenge in the safe design of dynamically loaded components. These uncertainties in fatigue behavior are mainly results of factors related to surface state including: Roughness, tensile residual stresses, scratches and notches at surface. Therefore, controlling these parameters allows one to increase fatigue strength and reduce scatter and uncertainties in fatigue behavior. Mechanical surface treatments are applied on parts to increase fatigue strength via introducing compressive residual stresses and work-hardening at surface. Two of the most common among these treatments are shot peening and deep rolling. Shot peening has found many applications in industry because of its flexibility. However, it introduces irregularities at the surface and may increase roughness which causes uncertainties in the fatigue behavior data; especially for low-medium strength materials. Unlike shot peening, deep rolling reduces surface roughness. Therefore, it has the capability to reduce uncertainty in the fatigue behavior. To this date, rolling direction of deep rolling was selected as tangential direction to turning direction for axisymmetric parts. Nonetheless, the authors believe that the rolling direction has an apparent effect on the fatigue behavior. In this study, longitudinal direction was also applied for deep rolling operation and the results of these two direction applications on the EN-AW-6082 aluminum alloy were investigated. It was shown that, longitudinal rolling had yielded less scatter and uncertainty in the fatigue behavior than the tangential rolling together with the higher fatigue strength.Item Open Access The effect of polar end of long-chain fluorocarbon oligomers in promoting the superamphiphobic property over multi-scale rough Al alloy surfaces(Elsevier BV, 2016) Saifaldeen, Z. S.; Khedir, K. R.; Camci, M. T.; Ucar, A.; Süzer, Şefik; Karabacak, T.Rough structures with re-entrant property and their subsequent surface energy reduction with long-chain fluorocarbon oligomers are both critical in developing superamphiphobic (SAP, i.e. both super hydrophobic and superoleophobic) surfaces. However, morphology of the low-surface energy layer on a rough re-entrant substrate can strongly depend on the fluorocarbon oligomers used. In this study, the effect of polar end of different kinds of long-chain fluorocarbon oligomers in promoting a self-assembled monolayer with close packed molecules and robust adhesion on multi-scale rough Al alloy surfaces was investigated. Hierarchical Al alloy surfaces with microgrooves and nanograss structures were developed by a simple combination of one-directional mechanical sanding and post treatment in boiling de-ionized water (DIW). Three types of long-chain fluorocarbon oligomers of 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (PFDTS), 1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane (PFDCS), and perfluorooctanoic acid (PFOA) were chemically vaporized onto these rough Al alloy surfaces. The PFDCS exhibited the lowest surface free energy of less than 10 mN/m. The contact angle and sliding angle measurements for water, ethylene glycol, and peanut oil verified the SAP property of hierarchical rough Al alloy surfaces treated with alkylsilane oligomers (PFDTS, PFDCS). However, the hierarchical surfaces treated with fluorocarbon oligomer with polar acidic tail (PFOA) showed highly amphiphobic properties but could not reach the threshold for SAP. Chemical stability of the hierarchical Al alloy surfaces treated with the fluorocarbon oligomers was tested under the harsh conditions of ultra-sonication in acetone and annealing at high temperature after different treatment times. Contact angle measurements revealed the robustness of the alkylsilane oligomers and deterioration of the PFOA coating particularly for low surface tension liquids. The robust adhesion and close-packing of the alkylsilane molecules as well as their vertical orientation with exposure of more CF3 groups instead of CF2 groups due to the polar silane-based tail are believed to be the main reasons behind their improved chemical stability. The selection of fluorocarbon oligomer with proper polar tail which can promote a self-assembled monolayer with close-packed molecules could make it possible for utilizing shorter fluorocarbon oligomers, which is environmentally favorable, to develop high surface energy materials with SAP properties.