BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Alkylarenes"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Bimetallic hydroxide catalysts for aerobic C-H activation
    (2024-01) Erdivan, Beyzanur
    The increasing interest in the oxidation of sp3 C-H and O-H bonds has garnered tremendous attention due to its potential for facile production of oxygenated organics. Precious metal-free bimetallic hydroxide-based materials are commonly employed in various applications such as batteries and photocatalysts. However, their prospects in C-H activation reactions have been poorly explored. This research focuses on the development and evaluation of a bimetallic Fe-Mn hydroxide catalyst for aerobic C-H activation and O-H oxidation reactions without the need for an initiator. The Fe-Mn hydroxide catalyst was synthesized and carefully optimized to enhance its catalytic efficiency in the direct oxygenation of a wide scope of alkylarene compounds through C-H functionalization and oxidation of benzylic alcohols. A series of Fe-Mn bimetal hydroxides with different Fe/Mn ratios were synthesized using a customized chemical co-precipitation method. These catalysts were then tested for the catalytic oxidation of fluorene to fluorenone using molecular oxygen as the sole oxidant, with the Fe0.6Mn0.4(OH)y-12S catalyst demonstrating the best performance. Under mild reaction conditions, the catalyst exhibited remarkable performance in activating C-H bonds using molecular oxygen as the oxidant. Various substrates, including alkylarenes and alcohols, were investigated, consistently yielding high yields of oxygenated products with minimal catalyst loadings. XRD, XPS, XANES, ICP-MS, BET, and TGA were employed to gain insights into the structural features of the catalyst. Our findings indicate that the following structural properties of the optimized Fe0.6Mn0.4(OH)y-12S catalyst could be responsible for the currently observed enhanced catalytic reactivity: i) unique Mn oxidation state (ca. Mn2.6+), ii) Fe cationic sites containing a mixture of Fe2+ and Fe3+ species, where Fe3+ species are the dominating species, iii)realtively low specific surface area of 68 m2/g, iv) relatively disordered and defective crystal structure comprised of bimetallic hydroxides as well as additional oxide/oxyhydroxide phases, v) residual Na+ surface species enabling electronic promotion of the cationic active sites via electron donation.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Precious metal-Free LaMnO3 perovskite catalyst with an optimized nanostructure for aerobic C–H bond activation reactions: alkylarene oxidation and naphthol dimerization
    (American Chemical Society, 2021-02-03) Şahin, Yeşim; Sika-Nartey, Abel Tetteh; Ercan, Kerem Emre; Koçak, Yusuf; Senol, Sinem; Özensoy, Emrah; Türkmen, Yunus Emre
    In this article, we describe the development of a new aerobic C–H oxidation methodology catalyzed by a precious metal-free LaMnO3 perovskite catalyst. Molecular oxygen is used as the sole oxidant in this approach, obviating the need for other expensive and/or environmentally hazardous stoichiometric oxidants. The electronic and structural properties of the LaMnO3 catalysts were systematically optimized, and a reductive pretreatment protocol was proved to be essential for acquiring the observed high catalytic activities. It is demonstrated that this newly developed method was extremely effective for the oxidation of alkylarenes to ketones as well as for the oxidative dimerization of 2-naphthol to 1,1-binaphthyl-2,2-diol (BINOL), a particularly important scaffold for asymmetric catalysis. Detailed spectroscopic and mechanistic studies provided valuable insights into the structural aspects of the active catalyst and the reaction mechanism.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback