BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Alkali silica reaction"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A method of two-scale chemo-thermal-mechanical coupling for concrete
    (CIMNE, 2011) Wu, T.; Temizer, İlker; Wriggers, P.
    The Alkali Silica Reaction(ASR) is one of the most important reasons to cause damage in cementitious constructions, which can be attributed to the expansion of hydrophilic gel produced in the reaction. In this contribution, the chemical extent is described depending on the temperature and it has influences on damage parameters. Expansions of the gel are assumed to only happen in the micropores of Hardened Cement Paste. Afterwards, the homogenization of damage in the microscale is initialized and the effective damage can be applied in the mesoscale directly. Moreover, parameter identification is implemented to extract the effective inelastic consititutive equation. In all, 3D multiscale chemo-thermo-mechanical coupled model is set up to describe the damage in the concrete due to ASR.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A multiscale method to analyze the deterioration due to alkali silica reaction considering the effects of temperature and relative humidity
    (International Center for Numerical Methods in Engineering, 2013) Wu, T.; Temizer I.; Wriggers P.
    This work presents a three-dimensional multiscale framework to investigate the deterioration resulting from alkali silica reaction (ASR) in the concrete. In this contribution, 3D micro-CT scan of hardened cement paste (HCP) and aggregates with a random distribution embedded in a homogenized cement paste matrix represent the microscale and mesoscale of the concrete respectively. A 3D hydro-chemo-thermo-mechanical model based on staggered method is developed at the mesoscale of the concrete, yet taking into account the deterioration at the microscale due to ASR.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback