BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Airborne radar systems"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Detection of jammers in range-doppler images generated in DTED based radar simulator using convolutional neural networks
    (IEEE - Institute of Electrical and Electronics Engineers, 2023-08-28) Şahinbay, H. E.; Akyol, Ali Alp; Özdemir, Ö.
    Airborne radars have a variety of air-to-air and air-to-ground missions. In both air-to-air and air-to-ground target detection missions, ground clutter reflections are received from the main beam and side lobes of the radar. The effects of this clutter can be clearly seen in the radar range-Doppler maps. In addition, there may be other sources in the environment that distort the radar's range-Doppler maps. These sources can be categorized as jammer and interference signals. They distord the range-Doppler maps, making target detection more difficult, interfering with target detection and, in some cases, leading to false target detection. The detection of jammer and interference signals, which are the source of this situation, is of critical importance for the operators controlling the platform. It is often not possible for operators to quickly detect and classify these jamming signals. Deep learning methods, which have recently been used in every field, can achieve much faster and robust target detection and classification results compared to humans. In this study, the success of a Convolutional Neural Network based technique, which is one of the deep learning methods, in detecting and classifying jammer and interference signals is investigated.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback