Browsing by Subject "Air Purification"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Influence of the sol – gel preparation method on the photocatalytic NO oxidation performance of TiO2/Al2O3 binary oxides(Elsevier, 2015-03-01) Soylu, A. M.; Polat, M.; Erdogan, D. A.; Erguven, H.; Ozensoy, E.; Vovk, E. I.In the current work, TiO2/Al2O3 binary oxide photocatalysts were synthesized via two different sol-gel protocols (P1 and P2), where various TiO2 to Al2O3 mole ratios (0.5 and 1.0) and calcination temperatures (150-1000 degrees C) were utilized in the synthesis. Structural characterization of the synthesized binary oxide photocatalysts was also performed via BET surface area analysis, X-ray diffraction (XRD) and Raman spectroscopy. The photocatalytic NO(g) oxidation performances of these binary oxides were measured under UVA irradiation in a comparative fashion to that of a Degussa P25 industrial benchmark. TiO2/Al2O3 binary oxide photocatalysts demonstrate a novel approach which is essentially a fusion of NSR (NOx storage reduction) and PCO (photocatalytic oxidation) technologies. In this approach, rather than attempting to perform complete NOx reduction, NO(g) is oxidized on a photocatalyst surface and stored in the solidstate. Current results suggest that alumina domains can be utilized as active NOx capturing sites that can significantly eliminate the release of toxic NO2(g) into the atmosphere. Using either (P1) or (P2) protocols, structurally different binary oxide systems can be synthesized enabling much superior photocatalytic total NOx removal (i.e. up to 176% higher) than Degussa P25. Furthermore, such binary oxides can also simultaneously decrease the toxic NO2(g) emission to the atmosphere by 75% with respect to that of Degussa P25. There is a complex interplay between calcination temperature, crystal structure, composition and specific surface area, which dictate the ultimate photocatalytic activity in a coordinative manner. Two structurally different photocatalysts prepared via different preparation protocols reveal comparably high photocatalytic activities implying that the active sites responsible for the photocatalytic NO(g) oxidation and storage have a non-trivial nature.Item Open Access Photocatalytic NOx oxidation and storage under ambient conditions for air purification(2012) Soylu, Aslı MelikeAir pollution is one of the most serious environmental problems in both urban and rural settings with a direct impact on human health. A variety of chemical compounds can be associated with air pollution and gaseous nitrogen oxides (NOx), such as NO and NO2, are especially among the most hazardous environmental pollutants. NOx abatement can be efficiently performed at elevated temperatures (i.e. T > 300oC), however, an important challenge in air purification is the abatement of gaseous NOx species under ambient conditions (i.e. at room temperature and under regular atmospheric conditions). Photocatalytic systems offer promising opportunities in order to tackle this important environmental challenge, as these systems can be tailored to efficiently clean/purify air under ambient conditions with the help of ultraviolet (UV) and/or visible (VIS) light. In the current work, a hybrid technology for the photocatalytic oxidation and storage of gas phase NOx species is proposed where titania based powders are investigated as candidate photocatalytic materials. With this aim, various components of a thermally activated conventional NOx Storage/Reduction (NSR) catalyst is combined with a photocatalytically activated NOx oxidation catalyst to obtain a photocatalytically activated NOx oxidation and storage material. In this regard, three different sets of samples were prepared and investigated. The first set of photocatalysts was prepared by employing Al2O3, a high surface area support material, in order to disperse the photocatalytically active titania in an effective manner. Using a ―sol-gel co-precipitation method‖, TiO2/Al2O3 binary oxides were synthesized (where TiO2:Al2O3 mole ratio was chosen to be 0.25, 0.5, 1.0) and characterized by X-ray diffraction, Raman Spectroscopy and BET. For these samples, the effects of specific surface area, calcination temperature and the crystallinity of TiO2 were investigated in relevance to the photocatalytic NOx oxidation/storage reaction. Next, an alkali/alkaline earth oxide storage component is added to the TiO2- Al2O3 mixture and the incorporation of the storage component is achieved via two different routes; (i) either through ―incipient wetness impregnation‖ of 5 or 10% (w/w) metal nitrate [M(NO3)x] salts on TiO2-Al2O3 and a subsequent calcination to obtain alkali/alkaline earth oxides [MyO] or (ii) by physically grinding 5 or 10% (w/w) BaO powder with TiO2-Al2O3 binary oxide to obtain a ternary mixture. For these samples, the route of metal oxide incorporation (impregnation vs. physical mixture), the type of metal oxide storage component (alkali vs. alkaline earth metal) and the percentage of metal oxide loading (5% vs. 10%, w/w) were examined in photocatlytic NOx oxidation/storage reaction. The photonic efficiencies of these samples were tested using a continuous flow system, composed of mass flow controllers, a custom-made UVA-illuminated reaction cell and an ambient chemiluminescence NOx analyzer. Photocatalytic performance of all samples were compared with that of a commercially available Degussa P25 TiO2 benchmark catalyst. Photocatalytic preformance tests revealed that the TiO2-Al2O3 binary oxides had much higher NOx storage capacities compared to Degussa P25 and the further addition of an alkaline earth oxide (BaO) storage component on TiO2-Al2O3 by physical mixing significantly enhanced the NOx capture in solid state and decreased unwanted gaseous NO2 emission to an almost negligible level. On the other hand, the ―incipient wetness impregantion‖ of metal nitrates resulted in metal titanate (MxTiyOz) formation on TiO2-Al2O3 binary oxide and diminished the photooxidation ability of the catalyst.