Browsing by Subject "Ag nanoparticles"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Newly designed silver coated-magnetic, monodisperse polymeric microbeads as SERS substrate for low-level detection of amoxicillin(Elsevier, 2016-09) Kibar, G.; Topal, A. E.; Dana, A.; Tuncel, A.We report the preparation of silver-coated magnetic polymethacrylate core-shell nanoparticles for use in surface-enhanced Raman scattering based drug detection. Monodisperse porous poly (mono-2-(methacryloyloxy)ethyl succinate-co-glycerol dimethacrylate), poly (MMES-co-GDMA) microbeads of ca. 5 μm diameter were first synthesized through a multistage microsuspension polymerization technique to serve as a carboxyl-bearing core region. Microspheres were subsequently magnetized by the co-precipitation of ferric ions, aminated through the surface hydroxyl groups and decorated with Au nanoparticles via electrostatic attraction. An Ag shell was then formed on top of the Au layer through a seed-mediated growth process, resulting in micron-sized monodisperse microbeads that exhibit Raman enhancement effects due to the roughness of the Ag surface layer. The core-shell microspheres were used as a new substrate for the detection of amoxicillin at trace concentrations up to 10-8 M by SERS. The proposed SERS platform can be evaluated as a useful tool for the follow-up amoxicillin pollution and low-level detection of amoxicillin in aqueous media.Item Open Access Plasmonics from metal nanoparticles for solar cell applications(2013) Günendi, Mehmet CanIn today’s economy, need for development in energy is essential. Solar energy is safe, and at the same time is one of the cleanest, cheapest choices of energy alternative to fossil fuels. In this perspective, using the sun light effectively is in fundamental importance. One of the problems, because of the indirect band gap of the material Si, is small energy conversion ratios of various solar cell structures and limited absorption of red light. Because of the material properties, Si cells cannot absorb red light, which contributes great amount of the sun light. One of the recent developed techniques to use red light is using metal nanoparticles (MNP) embedded in a semiconductor medium as sub-wavelength antennas or MNP scatterers, hence increasing the effective path length of light in the cell. Absorption and scattering are mostly in plasmon resonances. Shifting the plasmon resonance peaks is possible by changing various parameters of the system like the size of the MNPs. In this work, Finite-Difference Time-Domain (FDTD) method is used to analyze various systems worked. Mainly the MEEP package, developed at MIT, is used to simulate systems and other codes, related to analytical work, have also used to compare results. The plasmon resonances of various sizes of Ag MNPs embedded in different mediums at different positions are analyzed. Critical parameters like particle size, shape, dielectric medium, film thickness are discussed for improved solar cell applications.