Browsing by Subject "Aerodynamics"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Modeling of subsonic cavity flows by neural networks(IEEE, 2004-06) Efe, M.Ö.; Debiasi, M.; Özbay, Hitay; Samimy, M.Influencing the behavior of a flow field is a core issue as its improvement can yield significant increase of the efficiency and performance of fluidic systems. On the other hand, the tools of classical control systems theory are not directly applicable to processes displaying spatial continuity as in fluid flows. The cavity flow is a good example of this and a recent research focus in aerospace science is its modeling and control. The objective is to develop a finite dimensional representative model for the system with appropriately defined inputs and outputs. Towards the goal of reconstructing the pressure fluctuations measured at the cavity floor, this paper demonstrates that given some history of inputs and outputs, a neural network based feedforward model can be developed such that the response of the neural network matches the measured response. The advantages of using such a model are the representational simplicity of the model, structural flexibility to enable controller design and the ability to store information in an interconnected structure.Item Open Access Support vector networks for prediction of floor pressures in shallow cavity flows(IEEE, 2007) Efe, M. Ö.; Debiasi, M.; Yan, P.; Özbay, Hitay; Samimy, M.During the last decade, Support Vector Machines (SVM) have proved to be very successful tools for classification and regression problems. The representational performance of this type of networks is studied on a cavity flow facility developed to investigate the characteristics of aerodynamic flows at various Mach numbers. Several test conditions have been experimented to collect a set of data, which is in the form of pressure readings from particular points in the test section. The goal is to develop a SVM based model that emulates the one step ahead behavior of the flow measurement at the cavity floor. The SVM based model is built for a very limited amount of training data and the model is tested for an extended set of test conditions. A relative error is defined to measure the reconstruction performance, and the peak value of the FFT magnitude of the error is measured. The results indicate that the SVM based model is capable of matching the experimental data satisfactorily over the conditions that are close to the training data collection conditions, and the performance degrades as the Mach number gets away from the conditions considered during training.