Browsing by Subject "Aerobic oxidation"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Bimetallic hydroxide catalysts for aerobic C-H activation(2024-01) Erdivan, BeyzanurThe increasing interest in the oxidation of sp3 C-H and O-H bonds has garnered tremendous attention due to its potential for facile production of oxygenated organics. Precious metal-free bimetallic hydroxide-based materials are commonly employed in various applications such as batteries and photocatalysts. However, their prospects in C-H activation reactions have been poorly explored. This research focuses on the development and evaluation of a bimetallic Fe-Mn hydroxide catalyst for aerobic C-H activation and O-H oxidation reactions without the need for an initiator. The Fe-Mn hydroxide catalyst was synthesized and carefully optimized to enhance its catalytic efficiency in the direct oxygenation of a wide scope of alkylarene compounds through C-H functionalization and oxidation of benzylic alcohols. A series of Fe-Mn bimetal hydroxides with different Fe/Mn ratios were synthesized using a customized chemical co-precipitation method. These catalysts were then tested for the catalytic oxidation of fluorene to fluorenone using molecular oxygen as the sole oxidant, with the Fe0.6Mn0.4(OH)y-12S catalyst demonstrating the best performance. Under mild reaction conditions, the catalyst exhibited remarkable performance in activating C-H bonds using molecular oxygen as the oxidant. Various substrates, including alkylarenes and alcohols, were investigated, consistently yielding high yields of oxygenated products with minimal catalyst loadings. XRD, XPS, XANES, ICP-MS, BET, and TGA were employed to gain insights into the structural features of the catalyst. Our findings indicate that the following structural properties of the optimized Fe0.6Mn0.4(OH)y-12S catalyst could be responsible for the currently observed enhanced catalytic reactivity: i) unique Mn oxidation state (ca. Mn2.6+), ii) Fe cationic sites containing a mixture of Fe2+ and Fe3+ species, where Fe3+ species are the dominating species, iii)realtively low specific surface area of 68 m2/g, iv) relatively disordered and defective crystal structure comprised of bimetallic hydroxides as well as additional oxide/oxyhydroxide phases, v) residual Na+ surface species enabling electronic promotion of the cationic active sites via electron donation.Item Open Access Phase separation in liquid crystalline mesophases of [Co(H 2O)6]X2: P65 Systems (X = NO3-, Cl-, or ClO4-)(2007) Albayrak, C.; Gülten, G.; Dag, Ö.Transition-metal aqua complex salts [M(H2O)6]X 2 (where M is Mn(II), Co(II), Ni(II), Zn(II), or Cd(II) and X is NO3-, Cl-, or ClO4-) can be dissolved in triblock poly(ethylene oxide) - poly(propylene oxide) - poly(ethylene oxide) copolymers (Pluronics, such as P65) to form homogeneous liquid crystalline (LC) mesophases. However, the [Co-(H2O) 6]X2:P65 LC mesophases slowly undergo phase separation into a disordered ion-free phase and an ordered ion-rich LC mesophase. The phase separation also takes place in the two-salt systems [Co(H2O) 6](NO3):[Co(H2O)6]-(ClO 4)2:P65 in which the ion-free disordered domains separate out from the initially ordered homogeneous mesophase. The phase separation results in a physical mixture of a hexagonal nitrate-rich and cubic perchlorate-rich LC and disordered ion-free domains in the mixed salt systems. The driving force in the phase separation in the [Co(H2O) 6]-X2:P65 system is Co(II)-catalyzed aerobic oxidation of P65 into ester and/or other oxidation products. The separation of ions in the [Co(H2O)6](NO3)2:[Co(H 2O)6](ClO4)2:P65 system is related to the mesostructures of the two-salt systems that are different, hexagonal in the [Co(H2O)6](NO3)2:P65 system and cubic in the [Co(H2O)6](ClO4)2:P65 system. There is no visible phase separation in the other transition-metal salt:P65 systems. The phase separation in the [Co-(H2O) 6]X2:P65 systems can also be eliminated by keeping the mesophase under a N2 atmosphere. © 2007 American Chemical Society.