Browsing by Subject "Adipogenesis"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Bioactive glycopeptide nanofibers for tissue regeneration applications(2016-05) Çalışkan, Özüm Şehnaz.Natural extracellular matrix (ECM) is rich in glycopeptides and glycosaminoglycans, which function in controlling cellular processes. In this thesis, glycopeptide molecules that mimic natural glycopeptides and glycosaminoglycans were designed and synthesized and it was demonstrated that they induce directed differentiation of mesenchymal stem cells into chondrogenic and adipogenic lineages. In the first part of the study, hyaluronic acid (HA)-mimicking glycopeptide amphiphile molecules were synthesized to induce chondrogenic differentiation of mesenchymal stem cells (MSC). HA is the most abundant glycosaminoglycan (GAG) found in hyaline cartilage ECM. Peptide amphiphiles were synthesized by solid phase peptide synthesis method and used to form self-assembled bioactive glycopeptide nanofibers which mimic fibrous morphology of the ECM. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and circular dichroism (CD) were used for morphology and secondary structure analyses of the obtained nanofibers. It was demonstrated that glycopeptide amphiphiles create fibrous structure formed by nanofibers. Morphological changes, GAG production (Safranin-O staining and DMMB analysis), and chondrogenic gene marker expressions (qRT-PCR) of MSCs cultured on HA-mimetic nanofibers were analyzed. It was shown that HA-mimetic glycopeptide nanofibers induce early differentiation of MSCs into hyaline like chondrocytes. In the second part of the study, it was demonstrated that minor changes on glycopeptide backbone can create specific glycopeptides which induce differentiation of MSCs into brown adipocytes. Brown fat adipocytes do not store chemical energy as fat but dissipates it as heat and so they have emerged as promising anti-obesity agents. Lipid droplet accumulation (Oil Red-O staining) and adipogenic gene marker expression analyses (qRT-PCR) showed that the new glycopeptide nanofiber scaffold is a specific inducer of differentiation of MSCs into brown fat adipocytes.Item Open Access Spatial organization of functional groups on bioactive supramolecular glycopeptide nanofibers for differentiation of mesenchymal stem cells (MSCs) to brown adipogenesis(American Chemical Society, 2016-12) Caliskan, O. S.; Sardan, Ekiz M.; Tekinay, A. B.; Güler, Mustafa O.Spatial organization of bioactive moieties in biological materials has significant impact on the function and efficiency of these systems. Here, we demonstrate the effect of spatial organization of functional groups including carboxylate, amine, and glucose functionalities by using self-assembled peptide amphiphile (PA) nanofibers as a bioactive scaffold. We show that presentation of bioactive groups on glycopeptide nanofibers affects mesenchymal stem cells (MSCs) in a distinct manner by means of adhesion, proliferation, and differentiation. Strikingly, when the glutamic acid is present in the glycopeptide backbone, the PA nanofibers specifically induced differentiation of MSCs into brown adipocytes in the absence of any differentiation medium as shown by lipid droplet accumulation and adipogenic gene marker expression analyses. This effect was not evident in the other glycopeptide nanofibers, which displayed the same functional groups but with different spatial organization. Brown adipocytes are attractive targets for obesity treatment and are found in trace amounts in adults, which also makes this specific glycopeptide nanofiber system an attractive tool to study molecular pathways of brown adipocyte formation.