Browsing by Subject "Adaptive Routing"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Adaptive routing on the new switch chip for IBM SP systems(Academic Press, 2001) Abali, B.; Stunkel, C. B.; Herring, J.; Banikazemi, M.; Panda, D. K.; Aykanat, Cevdet; Aydogan, Y.The IBM RS/6000 SP is one of the most successful commercially available multicomputers. SP owes its success partially to the scalable, high bandwidth, low latency network. This paper describes the architecture of Switch2 switch chip, the recently developed third generation switching element which future IBM RS/6000 SP systems may be based on. Switch2 offers significant enhancements over the existing SP switch chips by incorporating advances in both VLSI technology and interconnection network research. One of the major new features of Switch2 is the incorporation of adaptive routing support into it. We describe the adaptive source routing architecture of the Switch2 chip which is a unique feature of this chip. The performance of the adaptive source routing and oblivious routing for a wide range of system characteristics and traffic patterns is evaluated. It is shown that adaptive source routing outperforms or performs comparably with oblivious routing. We propose two novel algorithms for generating adaptive routes specifications required for enabling the usage of adaptive source routing. A comparison between the cost of these two algorithms and the performance improvement obtained from using these algorithms are discussed. We also propose different output selection functions to be used in switching elements for implementing the adaptive routing. We evaluate and compare the performance of these selection functions and discover that the best selection functions for BMINs are not dependent on the traffic pattern, message size, or system size. © 2001 Academic Press.Item Open Access Adaptive source routing and route generation for multicomputers(1995) Aydoğan, YücelScalable multicomputers are based upon interconnection networks that typically provide multiple communication routes between any given pair of processor nodes. In such networks, the selection of the routes is an important problem because of its impact on the communication performance. We propose the adaptive source routing (ASR) scheme which combines adaptive routing and source routing into one which has the advantages of both schemes. In ASR, the degree of adaptivity of each packet is determined at the source processor. Every packet can be routed in a fully adaptive or partially adaptive or nonadaptive manner, all within the same network at the same time. The ASR scheme permits any network topology to be used provided that deadlock constraints are satisfied. We evaluate and compare performance of the adaptive source routing and non-adaptive randomized routing by simulations. Also we propose an algorithm to generate adaptive routes for all pairs of processors in any multistage interconnection network. Adaptive routes are stored in a route table in each processor’s memory and provide high bandwidth and reliable interprocessor communication. We evaluate the performance of the algorithm on IBM SP2 networks in terms of obtained bandwidth, time to fill in the route tables, and efficiency exploited by the parallel execution of the algorithm.