Browsing by Subject "Accident prevention"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Analysis of design parameters in SIL-4 safety-critical computer(IEEE, 2017-01) Ahangari, Hamzeh; Özkök, Y. I.; Yıldırım, A.; Say, F.; Atik, Funda; Öztürk, ÖzcanNowadays, Safety-critical computers are extensively used in may civil domains like transportation including railways, avionics and automotive. We noticed that in design of some previous works, some critical safety design parameters like failure diagnostic coverage (DC) or common cause failure (CCF) ratio have not been seriously taken into account. Moreover, in some cases safety has not been compared with standard safety levels (IEC-61508 SIL1-SIL4) or even have not met them. Most often, it is not very clear that which part of the system is the Achilles' heel and how design can be improved to reach standard safety levels. Motivated by such design ambiguities, we aim to study the effect of various design parameters on safety in some prevalent safety configurations: 1oo2 and 2oo3. 1oo1 is also used as a reference. By employing Markov modeling, sensitivity of safety to each of the following critical design parameters is analyzed: failure rate of processing element, failure diagnostics coverage, common cause failures and repair rates. This study gives a deeper sense regarding influence of variation in design parameters over safety. Consequently, to meet appropriate safety integrity level, instead of improving some system parts blindly, it will be possible to make an informed decision on more relevant parameters. © 2017 IEEE.Item Open Access Architecture framework for software safety(Springer, 2014-09) Gürbüz, Havva Gülay; Pala Er, N.; Tekinerdoğan, BedirCurrently, an increasing number of systems are controlled by soft- ware and rely on the correct operation of software. In this context, a safety- critical system is defined as a system in which malfunctioning software could result in death, injury or damage to environment. To mitigate these serious risks, the architecture of safety-critical systems needs to be carefully designed and analyzed. A common practice for modeling software architecture is the adoption of software architecture viewpoints to model the architecture for par- ticular stakeholders and concerns. Existing architecture viewpoints tend to be general purpose and do not explicitly focus on safety concerns in particular. To provide a complementary and dedicated support for designing safety critical systems, we propose an architecture framework for software safety. The archi- tecture framework is based on a metamodel that has been developed after a tho- rough domain analysis. The framework includes three coherent viewpoints, each of which addressing an important concern. The application of the view- points is illustrated for an industrial case of safety-critical avionics control computer system. © Springer International Publishing Switzerland 2014.Item Open Access Designing emergency response networks for hazardous materials transportation(2007) Berman O.; Verter V.; Kara, B.Y.Undesirable consequences of dangerous goods incidents can be mitigated by quick arrival of specialized response teams at the accident site. We present a novel methodology to determine the optimal design of a specialized team network so as to maximize its ability to respond to such incidents in a region. We show that this problem can be represented via a maximal arc-covering model. We discuss two formulations for the maximal arc-covering problem, a known one and a new one. Through computational experiments, we establish that the known formulation has excessive computational requirements for large-scale problems, whereas the alternative model constitutes a basis for an efficient heuristic. The methodology is applied to assess the emergency response capability to transport incidents, that involve gasoline, in Quebec and Ontario. We point out the possibility of a significant improvement via relocation of the existing specialized teams, which are currently stationed at the shipment origins. © 2005 Elsevier Ltd. All rights reserved.Item Open Access Universal product design involving elderly users: a participatory design model(Elsevier, 2004-07) Demirbilek, O.; Demirkan, H.Recent studies have shown that people prefer to age in their familiar environments, thus guiding designers to provide a safe and functionally appropriate environment for ageing people, regardless of their physical conditions or limitations. Therefore, a participatory design model is proposed where human beings can improve their quality of life by promoting independence, as well as safety, useability and attractiveness of the residence. Brainstorming, scenario building, unstructured interviews, sketching and videotaping are used as techniques in the participatory design sessions. Quality deployment matrices are employed to find the relationships between the elderly user's requirements and design specifications. A case study was devised to apply and test the conceptual model phase of the proposed model.