Browsing by Subject "Abstract representation"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Signal processing issues in diffraction and holographic 3DTV(IEEE, 2005) Onural, Levent; Özaktaş, Haldun M.Image capture and image display will most likely be decoupled in future 3DTV systems. For this reason, as well as the need to convert abstract representations to display driver signals, and the need to explicitly consider diffraction and propagation effects, it is expected that signal processing issues will play a fundamental role in achieving 3DTV operation. Since diffraction between two parallel planes is equivalent to a 2D linear shift-invariant system, various signal processing techniques play an important role. Diffraction between tilted planes can also be modeled as a relatively simple system, leading to efficient discrete computations. Two fundamental problems are digital computation of the optical field due to a 3D object, and finding the driver signals for a given optical device so as to generate the desired optical field in space. The discretization of optical signals leads to several interesting issues; for example, it is possible to violate the Nyquist rate while sampling, but still maintain full reconstruction. The fractional Fourier transform is another signal processing tool which finds application in optical wave propagation.Item Open Access Signal processing problems and algorithms in display side of 3DTV(IEEE, 2006-10) Ulusoy, E.; Esmer, Gökhan Bora; Özaktaş, Haldun M.; Onural, Levent; Gotchev, A.; Uzunov, V.Two important signal processing problems in the display side of a holographic 3DTV are the computation of the diffraction field of a 3D object from its abstract representation, and determination of the best display configuration to synthesize some intended light distribution. To solve the former problem, we worked on the computation of ID diffraction patterns from discrete data distributed over 2D space. The problem is solved using matrix pseudo-inversion which dominates the computational complexity. Then, the light field synthesis problem by a deflectable mirror array device (DMAD) is posed as a constrained linear optimization problem. The formulation makes direct application of common optimization algorithms quite easy. The simulations indicate that developed methods are promising. ©2006 IEEE.