Browsing by Subject "802.11"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Effects of physical channel separation on application flows in a multi-radio multi-hop wireless mesh network: an experimental study on BilMesh testbed(Academic Press, 2014) Ulucinar, A. R.; Korpeoglu, I.; Karasan, E.In this paper, we introduce BilMesh, an indoor 802.11 b/g mesh networking testbed we established, and we report about our performance experiments conducted on multi-hop topologies with single-radio and multi-radio relay nodes. We investigate and report the effects of using multi-radio, multi-channel relay nodes in the mesh networking infrastructure in terms of network and application layer performance metrics. We also study the effects of physical channel separation on achievable end-to-end goodput perceived by the applications in the multi-radio case by varying the channel separation between the radio interfaces of a multi-radio relay node. We have observed that the difference between TCP and UDP goodput performances together with the delay and jitter performance depends on the hop count. We also observed that assigning overlapping channels with a central frequency separation of 5-15 MHz may render the CSMA mechanism used in 802.11 MAC ineffective and hence reduce the overall network performance. Finally, we provide some suggestions that can be considered while designing related protocols and algorithms to deal with the observed facts.Item Open Access A novel measurement-based approach for modeling and computing interference factors for wireless channels(SpringerOpen, 2013) Ulucinar, A. R.; Korpeoglu, I.; Karasan, E.Wireless communication technologies divide their available spectrum into pre-defined channels. Some wireless technologies, such as the IEEE 802.11b/g, define their channels in such a way that adjacent channels share the spectrum. When two distinct channels share some part of their spectrum, simultaneous transmissions on these channels cause what is k own as the adjacent channel interference. For problems that consider adjacent channel interference, such as the channel assignment problem for multi-channel wireless mesh networks, we need a model that quantitatively describes adjacent channel interference. The interference factor is a concept defined to quantify the amount of the overlap, hence the interference, between two wireless channels. Analytical and experimental methods have been proposed in the literature to define the interference factors among channels of a wireless technology. In this article, we propose a physical-layer-measurement-based, technology-independent and generic approach that is capable of determining interference factors between the channels of a wireless technology and also between the channels of two different wireless technologies, such as IEEE 802.11 and IEEE 802.15.4. We also report our measurement results for interference factors among 802.11b DSSS channels and between 802.15.4 and 802.11b channels. Our results show that our approach is practical, accurate and generic enough to compute the interference factors of radio channels belonging to various wireless communication technologies. © 2013 Ulucinar et al.