Browsing by Subject "3D texture learning"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Fine detailed texture learning for 3D meshes with generative models(Institute of Electrical and Electronics Engineers, 2023-11-03) Dündar, Ayşegül; Gao, J.; Tao, A.; Catanzaro, B.This paper presents a method to achieve fine detailed texture learning for 3D models that are reconstructed from both multi-view and single-view images. The framework is posed as an adaptation problem and is done progressively where in the first stage, we focus on learning accurate geometry, whereas in the second stage, we focus on learning the texture with a generative adversarial network. The contributions of the paper are in the generative learning pipeline where we propose two improvements. First, since the learned textures should be spatially aligned, we propose an attention mechanism that relies on the learnable positions of pixels. Second, since discriminator receives aligned texture maps, we augment its input with a learnable embedding which improves the feedback to the generator. We achieve significant improvements on multi-view sequences from Tripod dataset as well as on single-view image datasets, Pascal 3D+ and CUB. We demonstrate that our method achieves superior 3D textured models compared to the previous works.Item Open Access Progressive learning of 3D reconstruction network from 2D GAN data(IEEE, 2024-02) Dündar, Ayşegül; Gao, Jun; Tao, Andrew; Catanzaro, BryanThis paper presents a method to reconstruct high-quality textured 3D models from single images. Current methods rely on datasets with expensive annotations; multi-view images and their camera parameters. Our method relies on GAN generated multi-view image datasets which have a negligible annotation cost. However, they are not strictly multi-view consistent and sometimes GANs output distorted images. This results in degraded reconstruction qualities. In this work, to overcome these limitations of generated datasets, we have two main contributions which lead us to achieve state-of-the-art results on challenging objects: 1) A robust multi-stage learning scheme that gradually relies more on the models own predictions when calculating losses and 2) A novel adversarial learning pipeline with online pseudo-ground truth generations to achieve fine details. Our work provides a bridge from 2D supervisions of GAN models to 3D reconstruction models and removes the expensive annotation efforts. We show significant improvements over previous methods whether they were trained on GAN generated multi-view images or on real images with expensive annotations.