Browsing by Subject "3D cell culture"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access 3D breast cancer model on silk fibroin–integrated microfluidic chips(SPRINGER HEIDELBERG, 2024) Yılmaz, Eylül Gülşen; İnci, FatihTo imitate in vivo environment of cells, microfluidics offer controllable fashions at micro-scale and enable regulate flow-related parameters precisely, leveraging the current state of 3D systems to 4D level through the inclusion of flow and shear stress. In particular, integrating silk fibroin as an adhering layer with microfluidic chips enables to form more comprehensive and biocompatible network between cells since silk fibroin holds outstanding mechanical and biological properties such as easy processability, biocompatibility, controllable biodegradation, and versatile functionalization. In this chapter, we describe design and fabrication of a microfluidic chip, with silk fibroin-covered microchannels for the formation of 3D structures, such as MCF-7 (human breast cancer) cell spheroids as a model system. All the steps performed here are characterized by surface-sensitive tools and standard tissue culture methods. Overall, this strategy can be easily integrated into various high-tech application areas such as drug delivery systems, regenerative medicine, and tissue engineering in near future.Item Open Access Characterization of chemosensitivity profiles of breast cancer cell lınes, with and without stem cell like features = Kök-hücre özelliği olan ve olmayan meme kanseri hücre hatlarının ilaç hassasiyet profillerinin tanımlanması(2014) Akbar, Muhammad WaqasBreast cancer is the second most common cause of death worldwide from cancer due to complications with its diagnosis and resistance to therapy. Recent studies have shown that breast tumors when compared with other solid tumors also contain a subpopulation termed as cancer stem cells (CSCs). CSCs are hard to kill due to their therapy resistant capacities. These unharmed cells then result into relapse of tumor after treatment. Some established breast cancer cell lines also behave in similar fashion to CSCs in overall manner thus termed as CSC like cell lines. This study primarily focuses on characterizing CSC like cell lines from non CSC like cell lines based upon their gene expression and prediction of drugs which can target these groups separately. In this study two databases, Cancer Cell Line Encyclopedia (CCLE) and Cancer Genome Project (CGP), were used which contain gene expression data and drugs cytotoxicity data for most of the established cancer cell lines. Breast cancer cell lines gene expression data was used to predict two gene lists which can separate breast cancer cell lines into CSC like and non CSC like cell lines by in silico analysis. These gene lists were named as Patentable and Non Patentable. Additionally four drugs were predicted which can target CSC like group (Midostaurin and Elesclomol) and non CSC like group (Panobinostat and Lapatinib) separately. Later these findings were validated in vitro. Non Patentable gene list could not be validated due to low concordance with microarray data. On the other hand, Patentable gene list was validated and was found concordant with microarray data. Out of four selected drugs, Panobinostat and Lapatinib showed increased toxicity to non CSC like cell lines while only Midostaurin showed toxicity to CSC like cell lines. To investigate further that cell lines were grown in 3D cell culture conditions, to increase their stem cell like properties (stemness). But only one cell line MDA-MB-157 which was found as CSC like, showed expected behavior. Additionally this cell line increased resistance to Lapatinib and Panobinostat and became more sensitive to Midostaurin. Correlation analysis showed some genes as potential biomarkers for selected drugs. In conclusion, in this study various genes are proposed to differentiate CSC like cell lines from non CSC like cell lines. And Midostaurin can be potential drug to treat CSC like cells while Lapatinib and Panobinostat showed increased activity against non CSC like cell lines.Item Open Access Microfluidic chip-based systems for monitoring cancer therapy(2022-12) Yılmaz, Eylül GülşenIn tumor microenvironment, cancer cells are exposed to a range of fluid shear stresses (FSS); yet, current in vitro three-dimensional (3D) models have limitations to investigate the impact of biophysical stimuli on cancer mechanism and chemoresistance in a dynamic manner. In the past few decades, vital demand for exploring biological significance of mechanical forces has led to the development of several innovative approaches. One of these approaches is the integration of microfluidic systems into cancer studies. The use of microfluidic chips has garnered increasing attention since they offer ease-of-manipulation, high-throughput, less material/reagent consumption, and low-cost. On the other hand, the researches have stated explicitly that tumor-derived extracellular vesicles (EVs) regulate local and systemic milieu to drive the development and spread of cancer through nano- and micron-sized vesicles they carry. In this thesis, breast cancer cells (MCF-7) have been utilized as a model cancer system, and accordingly, they are cultivated through SF-coated microfluidic systems in order to mimic tumor microenvironment, exhibiting a more dynamic condition. Simultaneously, traditional static culture of MCF-7 cells is also performed as a control group in order to understand the impact of flow conditions. The effects of FSS on gene expression—in particular, EpCAM and CK-18 genes, which are highly expressed in MCF-7 cells— have been examined at the end of cell culturing process. In addition, cancer cells developing any resistance to anti-cancer drugs on the course of FSS have been investigated. In this regard, the cells are treated with either doxorubicin or docetaxel (anti-cancer drugs) in the cases of dynamic (microfluidic system) and static (tissue culture flask) culture conditions. Multi-Drug Resistance 1 (MDR-1) and Breast Cancer Resistance Protein (BCRP) gene expression levels have been assessed once anti-cancer treatment has been finalized. The final step of this study relies on the isolation and analysis of EVs from both static and dynamic conditions with the presence and absence of anti-cancer drug treatment. The utility of EVs has been evaluated deliberately as biomarkers for real-time monitoring of treatment efficacy.Item Embargo Monte Carlo simulation-guided design for size-tuned tumor spheroid formation in 3D printed microwells(Wiley, 2024-09-01) Eş, İsmail; Ionescu, Ana-Maria Theodora; Görmüş, Burak M.; İnci, Fatih; Marques, Marco P. C.; Szita, Nicolas; de la Torre, Lucimara GaziolaTumor spheroid models have garnered significant attention in recent years as they can efficiently mimic in vivo models, and in addition, they offer a more controlled and reproducible environment for evaluating the efficacy of cancer drugs. In this study, we present the design and fabrication of a micromold template to form multicellular spheroids in a high-throughput and controlled-sized fashion. Briefly, polydimethylsiloxane-based micromolds at varying sizes and geometry were fabricated via soft lithography using 3D-printed molds as negative templates. The efficiency of spheroid formation was assessed using GFP-expressing human embryonic kidney 293 cells (HEK-293). After 7 days of culturing, circularity and cell viability of spheroids were >0.8 and 90%, respectively. At 1500 cells/microwell of cell seeding concentration, the spheroids were 454 +/- 15 mu m, 459 +/- 7 mu m, and 451 +/- 18 mu m when cultured in microwells with the diameters of 0.4, 0.6, and 0.8 mu m, respectively. Moreover, the distance between each microwell and surfactant treatment before cell seeding notably impacted the uniform spheroid formation. The centrifugation was the key step to collect cells on the bottom of the microwells. Our findings were further verified using a commercial microplate. Furthermore, Monte Carlo simulation confirmed the seeding conditions where the spheroids could be formed. This study showed prominent steps in investigating spheroid formation, thereby leveraging the current know-how on the mechanism of tumor growth.