Department of Psychology
Permanent URI for this communityhttps://hdl.handle.net/11693/115524
Browse
Browsing Department of Psychology by Subject "Acetylcholinesterase"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Long-term acetylcholinesterase depletion alters the levels of key synaptic proteins while maintaining neuronal markers in the aging zebrafish (Danio rerio) Brain(S. Karger AG, 2023-10-04) Karoğlu-Eravsar, Elif Tuğçe; Tüz-Şaşik, Melek Umay; Karaduman, Ayşenur; Keşküş, Ayse Gökçe; Arslan-Ergul, Ayça; Konu, Özlen; Kafalıgönül, Hulusi; Adams, Michelle M.Introduction: Interventions targeting cholinergic neurotransmission like acetylcholinesterase (AChE) inhibition distinguish potential mechanisms to delay age-related impairments and attenuate deficits related to neurodegenerative diseases. However, the chronic effects of these interventions are not well described. Methods: In the current study, global levels of cholinergic, cellular, synaptic, and inflammation-mediating proteins were assessed within the context of aging and chronic reduction of AChE activity. Long-term depletion of AChE activity was induced by using a mutant zebrafish line, and they were compared with the wildtype group at young and old ages. Results: Results demonstrated that AChE activity was lower in both young and old mutants, and this decrease coincided with a reduction in ACh content. Additionally, an overall age-related reduction in AChE activity and the AChE/ACh ratio was observed, and this decline was more prominent in wildtype groups. The levels of an immature neuronal marker were upregulated in mutants, while a glial marker showed an overall reduction. Mutants had preserved levels of inhibitory and presynaptic elements with aging, whereas glutamate receptor subunit levels declined. Conclusion: Long-term AChE activity depletion induces synaptic and cellular alterations. These data provide further insights into molecular targets and adaptive responses following the long-term reduction of AChE activity that was also targeted pharmacologically to treat neurodegenerative diseases in human subjects.Item Open Access Zebrafish optomotor response to second-order motion illustrates that age-related changes in motion detection depend on the activated motion system(Elsevier Inc., 2023-06-10) Karaduman, Ayşenur; Karoğlu-Eravşar, Elif Tuğçe; Kaya, Utku; Aydın, Alaz; Adams, Michelle Marie; Kafalıgönül, HulusiVarious aspects of visual functioning, including motion perception, change with age. Yet, there is a lack of comprehensive understanding of age-related alterations at different stages of motion processing and in each motion system. To understand the effects of aging on second-order motion processing, we investigated optomotor responses (OMR) in younger and older wild-type (AB-strain) and acetylcholinesterase (achesb55/+) mutant zebrafish. The mutant fish with decreased levels of acetylcholinesterase have been shown to have delayed age-related cognitive decline. Compared to previous results on first-order motion, we found distinct changes in OMR to second-order motion. The polarity of OMR was dependent on age, such that second-order stimulation led to mainly negative OMR in the younger group while older zebrafish had positive responses. Hence, these findings revealed an overall aging effect on the detection of second-order motion. Moreover, neither the genotype of zebrafish nor the spatial frequency of motion significantly changed the response magnitude. Our findings support the view that age-related changes in motion detection depend on the activated motion system. © 2023 Elsevier Inc.