Bilkent Center For Bioinformatics (BCBI)
Permanent URI for this communityhttps://hdl.handle.net/11693/115585
Browse
Browsing Bilkent Center For Bioinformatics (BCBI) by Subject "Bioinformatics"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Algorithms for effective querying of compound graph-based pathway databases(BioMed Central Ltd., 2009-11-16) Doğrusöz, Uğur; Çetintaş, Ahmet; Demir, Emek; Babur, ÖzgünBackground: Graph-based pathway ontologies and databases are widely used to represent data about cellular processes. This representation makes it possible to programmatically integrate cellular networks and to investigate them using the well-understood concepts of graph theory in order to predict their structural and dynamic properties. An extension of this graph representation, namely hierarchically structured or compound graphs, in which a member of a biological network may recursively contain a sub-network of a somehow logically similar group of biological objects, provides many additional benefits for analysis of biological pathways, including reduction of complexity by decomposition into distinct components or modules. In this regard, it is essential to effectively query such integrated large compound networks to extract the sub-networks of interest with the help of efficient algorithms and software tools. Results: Towards this goal, we developed a querying framework, along with a number of graph-theoretic algorithms from simple neighborhood queries to shortest paths to feedback loops, that is applicable to all sorts of graph-based pathway databases, from PPIs (protein-protein interactions) to metabolic and signaling pathways. The framework is unique in that it can account for compound or nested structures and ubiquitous entities present in the pathway data. In addition, the queries may be related to each other through "AND" and "OR" operators, and can be recursively organized into a tree, in which the result of one query might be a source and/or target for another, to form more complex queries. The algorithms were implemented within the querying component of a new version of the software tool PATIKAweb (Pathway Analysis Tool for Integration and Knowledge Acquisition) and have proven useful for answering a number of biologically significant questions for large graph-based pathway databases. Conclusion: The PATIKA Project Web site is http://www.patika.org. PATIKAweb version 2.1 is available at http://web.patika.org. © 2009 Dogrusoz et al; licensee BioMed Central Ltd.Item Open Access A layout algorithm for signaling pathways(Elsevier, 2006-01-20) Genç, Burkay; Doğrusöz, UğurVisualization is crucial to the effective analysis of biological pathways. A poorly laid out pathway confuses the user, while a well laid out one improves the user's comprehension of the underlying biological phenomenon. We present a new, elegant algorithm for layout of biological signaling pathways. Our algorithm uses a force-directed layout scheme, taking into account directional and rectangular regional constraints enforced by different molecular interaction types and subcellular locations in a cell. The algorithm has been successfully implemented as part of a pathway visualization and analysis toolkit named Patika, and results with respect to computational complexity and quality of the layout have been found satisfactory. The algorithm may be easily adapted to be used in other applications with similar conventions and constraints as well. Patika version 1.0 beta is available upon request at http://www.patika.org. © 2004 Elsevier Inc. All rights reserved.Item Open Access A layout algorithm for undirected compound graphs(Elsevier, 2009-03-15) Doğrusöz, Uğur; Giral, Erhan; Çetintaş, Ahmet; Civril, Ali; Demir, EmekWe present an algorithm for the layout of undirected compound graphs, relaxing restrictions of previously known algorithms in regards to topology and geometry. The algorithm is based on the traditional force-directed layout scheme with extensions to handle multi-level nesting, edges between nodes of arbitrary nesting levels, varying node sizes, and other possible application-specific constraints. Experimental results show that the execution time and quality of the produced drawings with respect to commonly accepted layout criteria are quite satisfactory. The algorithm has also been successfully implemented as part of a pathway integration and analysis toolkit named PATIKA, for drawing complicated biological pathways with compartmental constraints and arbitrary nesting relations to represent molecular complexes and various types of pathway abstractions. © 2008 Elsevier Inc. All rights reserved.Item Open Access PATIKAmad: putting microarray data into pathway context(Wiley - V C H Verlag GmbH & Co. KGaA, 2008-06) Babur, Özgün; Colak, Recep; Demir, Emek; Doğrusöz, UğurHigh-throughput experiments, most significantly DNA microarrays, provide us with system-scale profiles. Connecting these data with existing biological networks poses a formidable challenge to uncover facts about a cell's proteome. Studies and tools with this purpose are limited to networks with simple structure, such as protein-protein interaction graphs, or do not go much beyond than simply displaying values on the network. We have built a microarray data analysis tool, named PATIKAmad, which can be used to associate microarray data with the pathway models in mechanistic detail, and provides facilities for visualization, clustering, querying, and navigation of biological graphs related with loaded microarray experiments. PATIKAmad is freely available to noncommercial users as a new module of PATIKAweb at http://web.patika.org. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA.Item Open Access VISIBIOweb: visualization and layout services for BioPAX pathway models(Oxford University Press, 2010-06-01) Dilek, Alptuğ; Belviranlı, Mehmet E.; Doğrusöz, UğurWith recent advancements in techniques for cellular data acquisition, information on cellular processes has been increasing at a dramatic rate. Visualization is critical to analyzing and interpreting complex information; representing cellular processes or pathways is no exception. VISIBIOweb is a free, open-source, web-based pathway visualization and layout service for pathway models in BioPAX format. With VISIBIOweb, one can obtain well-laid-out views of pathway models using the standard notation of the Systems Biology Graphical Notation (SBGN), and can embed such views within onés web pages as desired. Pathway views may be navigated using zoom and scroll tools; pathway object properties, including any external database references available in the data, may be inspected interactively. The automatic layout component of VISIBIOweb may also be accessed programmatically from other tools using Hypertext Transfer Protocol (HTTP). The web site is free and open to all users and there is no login requirement. It is available at: http://visibioweb.patika.org. © The Author(s) 2010. Published by Oxford University Press.