Browsing by Author "Yesildal, F."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Angiogenic heparin-mimetic peptide nanofiber gel improves regenerative healing of acute wounds(American Chemical Society, 2017) Uzunalli, G.; Mammadov R.; Yesildal, F.; Alhan, D.; Ozturk, S.; Ozgurtas, T.; Güler, Mustafa O.; Tekinay, A. B.Wound repair in adult mammals typically ends with the formation of a scar, which prevents full restoration of the function of the healthy tissue, although most of the wounded skin heals. Rapid and functional recovery of major wound injuries requires therapeutic approaches that can enhance the healing process via overcoming mechanical and biochemical problems. In this study, we showed that self-assembled heparin-mimetic peptide nanofiber gel was an effective bioactive wound dressing for the rapid and functional repair of full-thickness excisional wounds in the rat model. The bioactive gel-treated wounds exhibited increased angiogenesis (p < 0.05), re-epithelization (p < 0.05), skin appendage formation, and granulation tissue organization (p < 0.05) compared to sucrose-treated samples. Increased blood vessel numbers in the gel-treated wounds on day 7 suggest that angiogenesis played a key role in improvement of tissue healing in bioactive gel-treated wounds. Overall, the angiogenic heparin-mimetic peptide nanofiber gel is a promising platform for enhancing the scar-free recovery of acute wounds.Item Open Access Aspartame induces angiogenesis in vitro and in vivo models(SAGE Publications Ltd, 2015) Yesildal, F.; Aydin, F. N.; Deveci, S.; Tekin, S.; Aydin, I.; Mammadov R.; Fermanli, O.; Avcu, F.; Acikel, C. H.; Ozgurtas, T.Angiogenesis is the process of generating new blood vessels from preexisting vessels and is considered essential in many pathological conditions. The purpose of the present study is to evaluate the effect of aspartame on angiogenesis in vivo chick chorioallantoic membrane (CAM) and wound-healing models as well as in vitro 2,3-bis-2H-tetrazolium-5-carboxanilide (XTT) and tube formation assays. In CAM assay, aspartame increased angiogenesis in a concentration-dependent manner. Compared with the control group, aspartame has significantly increased vessel proliferation (p < 0.001). In addition, in vivo rat model of skin wound-healing study showed that aspartame group had better healing than control group, and this was statistically significant at p < 0.05. There was a slight proliferative effect of aspartame on human umbilical vein endothelial cells on XTT assay in vitro, but it was not statistically significant; and there was no antiangiogenic effect of aspartame on tube formation assay in vitro. These results provide evidence that aspartame induces angiogenesis in vitro and in vivo; so regular use may have undesirable effect on susceptible cases. © The Author(s) 2015.