Browsing by Author "Yau, Arma Musa"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Porous organic polymers for electrochemical and energy storage application(2022-08) Yau, Arma MusaThe intrinsic porosity and tunable morphology of Porous Organic Polymers (POPs), materials made from organic building blocks joined by strong covalent bonds, have become appealing in the context of electrochemical applications. In the first section of this thesis, a low-cost thiophene derivative and melamine were assembled into nitrogen and sulfur-enriched microporous organic polymer (MOP) using a pyrolysis-free one-pot Schiff-base type polycondensation reaction. The synthesized polymer is characterized by FT-IR, SEM, TEM, BET, XRD, XPS, TGA and UV-VIS. With 195.731 m2 g–1 surface area and 0.047 cm3 g–1 pore volume, the as-synthesized MOP has a cotton-like morphology and a micropore-dominated pore size distribution. After encapsulating it with a nickel co-catalyst, we showed that the obtained framework (MOP) could be used as an efficient catalyst for hydrogen evolution reaction (HER) in an alkaline electrolyte with the optimum composite (Ni2@MOP) exhibiting a remarkable onset overpotential of -66 mV. Furthermore, the optimum electrocatalyst showed good stability, delivering 90.84% faradaic efficiency (FE) after a 3.5 h chronoamperometry experiment. In the second section, the synthesized porous organic polymer and CB[6]-porphyrin covalent organic framework were investigated for potential use as electrode materials for supercapacitors.Item Open Access Triazine/thiophene-based microporous organic polymer for electrocatalytic hydrogen evolution reaction(John Wiley and Sons, Ltd, 2022-12-07) Yau, Arma Musa; Khaligh, Aisan; Tuncel, DönüşIn this study, sulfur-enriched microporous organic polymer (MOP) was prepared using one-pot Shiff-base type polycondensation reaction of thiophendicarboxaldehyde with melamine. With 195.731 m2 g−1 surface area and 0.047 cm3 g−1 pore volume, the as-synthesized MOP has a cotton-like morphology and a micropore-dominated pore size distribution. After loading MOP with nickel as a co-catalyst, we demonstrated that the obtained framework could be used as an efficient and robust electrocatalyst for hydrogen evolution reaction (HER) in an alkaline medium with the optimum composite (Ni2@MOP) exhibiting a low onset potential of −66 mV. Furthermore, the optimum electrocatalyst showed good stability, delivering 91% faradaic efficiency (FE) after a 3.5 h chronoamperometry experiment.