Browsing by Author "Yarkan S."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Interference mitigation and awareness for improved reliability(Cambridge University Press, 2011) Arslan, H.; Yarkan S.; Şahin, M. E.; Gezici, SinanWireless systems are commonly affected by interference from various sources. For example, a number of users that operate in the same wireless network can result in multiple-access interference (MAI). In addition, for ultrawideband (UWB) systems, which operate at very low power spectral densities, strong narrowband interference (NBI) can have significant effects on the communications reliability. Therefore, interference mitigation and awareness are crucial in order to realize reliable communications systems. In this chapter, pulse-based UWB systems are considered, and the mitigation of MAI is investigated first. Then, NBI avoidance and cancelation are studied for UWB systems. Finally, interference awareness is discussed for short-rate communications, next-generation wireless networks, and cognitive radios.Mitigation of multiple-access interference (MAI)In an impulse radio ultrawideband (IR-UWB) communications system, pulses with very short durations, commonly less than one nanosecond, are transmitted with a low-duty cycle, and information is carried by the positions or the polarities of pulses [1-5]. Each pulse resides in an interval called frame, and the positions of pulses within frames are determined according to time-hopping (TH) sequences specific to each user. The low-duty cycle structure together with TH sequences provide a multiple-access capability for IR-UWB systems [6].Although IR-UWB systems can theoretically accommodate a large number of users in a multiple-access environment [2, 4], advanced signal processing techniques are necessary in practice in order to mitigate the effects of interfering users on the detection of information symbols efficiently [6]. © Cambridge University Press 2011.Item Open Access An online adaptive cooperation scheme for spectrum sensing based on a second-order statistical method(Institute of Electrical and Electronics Engineers, 2012) Yarkan S.; Töreyin, B. U.; Qaraqe, K. A.; Çetin, A. EnisSpectrum sensing is one of the most important features of cognitive radio (CR) systems. Although spectrum sensing can be performed by a single CR, it is shown in the literature that cooperative techniques, including multiple CRs/sensors, improve the performance and reliability of spectrum sensing. Existing cooperation techniques usually assume a static communication scenario between the unknown source and sensors along with a fixed propagation environment class. In this paper, an online adaptive cooperation scheme is proposed for spectrum sensing to maintain the level of sensing reliability and performance under changing channel and environmental conditions. Each cooperating sensor analyzes second-order statistics of the received signal, which undergoes both correlated fast and slow fading. Autocorrelation estimation data from sensors are fused together by an adaptive weighted linear combination at the fusion center. Weight update operation is performed online through the use of orthogonal projection onto convex sets. Numerical results show that the performance of the proposed scheme is maintained for dynamically changing characteristics of the channel between an unknown source and sensors, even under different physical propagation environments. In addition, it is shown that the proposed cooperative scheme, which is based on second-order detectors, yields better results compared with the same fusion mechanism that is based on conventional energy detectors.