Browsing by Author "Yang, M."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Transmission Near-Field Scanning Optical Microscopy Investigation on Cellular Uptake Behavior of Iron Oxide Nanoparticles(2012) Zhang, Y.; Kyle J.R.; Penchev, M.; Yazdanpanah V.; Yu J.; Li, Y.; Yang, M.; Budak G.; Özbay, Ekmel; Ozkan, M.; Ozkan, C.S.Cellular uptake behavior of iron oxide nanoparticles is investigated using a transmission near-field scanning optical microscopy (NSOM) without the need of fluorescent labeling. By using the transmission NSOM system, we could simultaneously explore the near-field optical analysis of the cell interior and record the topographic information of the cell surface. The cell endocytosis of iron oxide nanoparticles by normal breast MCF10A cells is first studied by this transmission NSOM system, and this dual functional nanoscale-resolution microscopy shows the capability of mapping the spatial localization of nanoparticles in/outside cell surface without the need of fluorescence labeling. Nanoscale optical signature patterns for iron oxide nanoparticle-loaded vesicles inside the cells were observed and analyzed. © Springer Science+Business Media, LLC 2012.Item Open Access Zeta potential: A surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells(Springer New York LLC, 2008) Zhang, Y.; Yang, M.; Portney, N. G.; Cui, D.; Budak, G.; Özbay, Ekmel; Ozkan, M.; Ozkan, C. S.We demonstrate the use of surface Zeta potential measurements as a new tool to investigate the interactions of iron oxide nanoparticles and cowpea mosaic virus (CPMV) nanoparticles with human normal breast epithelial cells (MCF10A) and cancer breast epithelial cells (MCF7) respectively. A substantial understanding in the interaction of nanoparticles with normal and cancer cells in vitro will enable the capabilities of improving diagnostic and treatment methods in cancer research, such as imaging and targeted drug delivery. A theoretical Zeta potential model is first established to show the effects of binding process and internalization process during the nanoparticle uptake by cells and the possible trends of Zeta potential change is predicted for different cell endocytosis capacities. The corresponding changes of total surface charge of cells in the form of Zeta potential measurements were then reported after incubated respectively with iron oxide nanoparticles and CPMV nanoparticles. As observed, after MCF7 and MCF10A cells were incubated respectively with two types of nanoparticles, the significant differences in their surface charge change indicate the potential role of Zeta potential as a valuable biological signature in studying the cellular interaction of nanoparticles, as well as specific cell functionality.