Browsing by Author "Wymeersch, H."
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Distributed bounding of feasible sets in cooperative wireless network positioning(IEEE, 2013) Gholami, M. R.; Wymeersch, H.; Gezici, Sinan; Ström, E. G.Locations of target nodes in cooperative wireless sensor networks can be confined to a number of feasible sets in certain situations, e.g., when the estimated distances between sensors are larger than the actual distances. Quantifying feasible sets is often challenging in cooperative positioning. In this letter, we propose an iterative technique to cooperatively outer approximate the feasible sets containing the locations of the target nodes. We first outer approximate a feasible set including a target node location by an ellipsoid. Then, we extend the ellipsoid with the measured distances between sensor nodes and obtain larger ellipsoids. The larger ellipsoids are used to determine the intersections containing other targets. Simulation results show that the proposed technique converges after a small number of iterations.Item Open Access Localization in Mobile Wireless and Sensor Networks(2011) Nicoli, M.; Gezici, Sinan; Sahinoglu, Z.; Wymeersch, H.[No abstract available]Item Open Access On the Impact of hardware impairments on RIS-aided localization(IEEE, 2022-05) Öztürk, Cüneyd; Keskin, M. F.; Wymeersch, H.; Gezici, SinanWe investigate a reconfigurable intelligent surface (RIS)-aided near-field localization system with single-antenna user equipment (UE) and base station (BS) under hardware impairments by considering a practical phase-dependent RIS amplitude variations model. To analyze the localization performance under the mismatch between the practical model and the ideal model with unit-amplitude RIS elements, we employ the misspecified Cramér-Rao bound (MCRB). Based on the MCRB derivation, the lower bound (LB) on the mean-squared error for estimation of UE position is evaluated and shown to converge to the MCRB at low signal-to-noise ratios (SNRs). Simulation results indicate more severe performance degradation due to the model misspecification with increasing SNR. In addition, the mismatched maximum likelihood (MML) estimator is derived and found to be tight to the LB in the high SNR regime. Finally, we observe that the model mismatch can lead to an order-of-magnitude localization performance loss at high SNRs. © 2022 IEEE.Item Open Access RIS-aided near-field localization under phase-dependent amplitude variations(Institute of Electrical and Electronics Engineers , 2023-08-14) Ozturk, C.; Keskin, M. F.; Wymeersch, H.; Gezici, SinanWe investigate the problem of reconfigurable intelligent surface (RIS)-aided near-field localization of a user equipment (UE) served by a base station (BS) under phase-dependent amplitude variations at each RIS element. Through a misspecified Cramér-Rao bound (MCRB) analysis and a resulting lower bound (LB) on localization, we show that when the UE is unaware of amplitude variations (i.e., assumes unit-amplitude responses), severe performance penalties can arise, especially at high signal-to-noise ratios (SNRs). Leveraging Jacobi-Anger expansion to decouple range-azimuth-elevation dimensions, we develop a low-complexity approximated mismatched maximum likelihood (AMML) estimator, which is asymptotically tight to the LB. To mitigate performance loss due to model mismatch, we propose to jointly estimate the UE location and the RIS amplitude model parameters. The corresponding Cramér-Rao bound (CRB) is derived, as well as an iterative refinement algorithm, which employs the AMML method as a subroutine and alternatingly updates individual parameters of the RIS amplitude model. Simulation results indicate fast convergence and performance close to the CRB. The proposed method can successfully recover the performance loss of the AMML under a wide range of RIS parameters and effectively calibrate the RIS amplitude model online with the help of a user that has an a-priori unknown location.Item Open Access Signal processing techniques for anywhere, anytime positioning(Springer International Publishing, 2014) Luise, M.; Fernández-Prades, C.; Gezici, Sinan; Wymeersch, H.Item Open Access Upper bounds on position error of a single location estimate in wireless sensor networks(Hindawi Publishing Corporation, 2014) Gholami, M. R.; Ström, E. G.; Wymeersch, H.; Gezici, SinanThis paper studies upper bounds on the position error for a single estimate of an unknown target node position based on distance estimates in wireless sensor networks. In this study, we investigate a number of approaches to confine the target node position to bounded sets for different scenarios. Firstly, if at least one distance estimate error is positive, we derive a simple, but potentially loose upper bound, which is always valid. In addition assuming that the probability density of measurement noise is nonzero for positive values and a sufficiently large number of distance estimates are available, we propose an upper bound, which is valid with high probability. Secondly, if a reasonable lower bound on negative measurement errors is known a priori, we manipulate the distance estimates to obtain a new set with positive measurement errors. In general, we formulate bounds as nonconvex optimization problems. To solve the problems, we employ a relaxation technique and obtain semidefinite programs. We also propose a simple approach to find the bounds in closed forms. Simulation results show reasonable tightness for different bounds in various situations.