Browsing by Author "Vegni L."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Extracting power from sub-wavelength apertures by using electrically small resonators: Phenomenology, modeling, and applications(IEEE, 2012) Bilotti F.; Di Palma L.; Ramaccia, D.; Toscano, A.; Vegni L.; Ateş, Damla; Özbay, EkmelIn this contribution, we review our recent work on the extraction of the electromagnetic power from electrically small apertures by using metamaterial-inspired resonators. First, we present an antenna interpretation of the power transmission through sub-wavelength apertures and discuss the questioned concept of 'enhanced transmission'. Then, we present the so-called 'connected bi-omega particle' and the related analytical model. After that, exploiting proper numerical and experimental examples, we also show that the electromagnetic response of such a particle is not influenced by the surrounding environment. This unique property makes the particle a suitable candidate for the implementation of microwave components based on the selective power extraction from electrically small apertures. Finally, the application of the proposed concepts to the design of innovative microwave components, such as waveguide filters, diplexers, power-splitters, modal filters, horn antennas, etc. will be considered and demonstrated through proper numerical and experimental results. © 2012 IEEE.Item Open Access Optimization and tunability of deep subwavelength resonators for metamaterial applications: complete enhanced transmission through a subwavelength aperture(Optical Society of American (OSA), 2009) Alici, K.B.; Bilotti F.; Vegni L.; Özbay, EkmelIn the present work, we studied particle candidates for metamaterial applications, especially in terms of their electrical size and resonance strength. The analyzed particles can be easily produced via planar fabrication techniques. The electrical size of multi-split ring resonators, spiral resonators, and multi-spiral resonators are reported as a function of the particle side length and substrate permittivity. The study is continued by demonstrating the scalability of the particles to higher frequencies and the proposition of the optimized particle for antenna, absorber, and superlens applications: a multi-spiral resonator with ë/30 electrical size operating at 0.810 GHz. We explain a method for tuning the resonance frequency of the multi-split structures. Finally, we demonstrate that by inserting deep subwavelength resonators into periodically arranged subwavelength apertures, complete transmission enhancement can be obtained at the magnetic resonance frequency. © 2009 Optical Society of America.Item Open Access Resonant artificial structures to achieve extraordinary transmission at microwaves(IEEE, 2010) Scorrano L.; Ilotti F.; Özbay, Ekmel; Vegni L.In this contribution, the role of artificial resonant structures in increasing the transmission through sub-wavelength apertures is discussed. Those devices are capable to enhance the aperture equivalent electric and magnetic dipole moments and, consequently, the overall power transmission. The design details are given and the enhancement performances are then illustrated through the use of full-wave simulations. Such structures may find applications in different fields, such as high-resolution spatial filters, ultra-diffractive imaging systems, etc © 2010 EuMA.