Browsing by Author "Varshney, P. K."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access On the optimality of likelihood ratio test for prospect theory-based binary hypothesis testing(Institute of Electrical and Electronics Engineers, 2018) Gezici, Sinan; Varshney, P. K.In this letter, the optimality of the likelihood ratio test (LRT) is investigated for binary hypothesis testing problems in the presence of a behavioral decision-maker. By utilizing prospect theory, a behavioral decision-maker is modeled to cognitively distort probabilities and costs based on some weight and value functions, respectively. It is proved that the LRT may or may not be an optimal decision rule for prospect theory-based binary hypothesis testing, and conditions are derived to specify different scenarios. In addition, it is shown that when the LRT is an optimal decision rule, it corresponds to a randomized decision rule in some cases; i.e., nonrandomized LRTs may not be optimal. This is unlike Bayesian binary hypothesis testing, in which the optimal decision rule can always be expressed in the form of a nonrandomized LRT. Finally, it is proved that the optimal decision rule for prospect theory-based binary hypothesis testing can always be represented by a decision rule that randomizes at most two LRTs. Two examples are presented to corroborate the theoretical results.Item Open Access Optimal signaling and detector design for M-ary communication systems in the presence of multiple additive noise channels(Academic Press, 2014-03) Dulek, B.; Tutay, M. E.; Gezici, Sinan; Varshney, P. K.An M-ary communication system is considered in which the transmitter and the receiver are connected via multiple additive (possibly non-Gaussian) noise channels, any one of which can be utilized for the transmission of a given symbol. Contrary to deterministic signaling (i.e., employing a fixed constellation), a stochastic signaling approach is adopted by treating the signal values transmitted for each information symbol over each channel as random variables. In particular, the joint optimization of the channel switching (i.e., time sharing among different channels) strategy, stochastic signals, and decision rules at the receiver is performed in order to minimize the average probability of error under an average transmit power constraint. It is proved that the solution to this problem involves either one of the following: (i) deterministic signaling over a single channel, (ii) randomizing (time sharing) between two different signal constellations over a single channel, or (iii) switching (time sharing) between two channels with deterministic signaling over each channel. For all cases, the optimal strategies are shown to employ corresponding maximum a posteriori probability (MAP) decision rules at the receiver. In addition, sufficient conditions are derived in order to specify whether the proposed strategy can or cannot improve the error performance over the conventional approach, in which a single channel is employed with deterministic signaling at the average power limit. Finally, numerical examples are presented to illustrate the theoretical results. © 2013 Elsevier Inc.